APPENDIX 11A: Simple formulas for PFE, EE and EPE of a normal distribution

Consider a normal distribution with mean μ (expected future value) and standard deviation (of the future value) σ. The future value of the portfolio in question (for an arbitrary time horizon) is given by:

$$
V=\mu+\sigma Z
$$

where Z is a standard normal variable.

i) Potential future exposure (PFE)

This measure is similar to that used in value-at-risk (VAR) calculations. The PFE at a given confidence level $\alpha, P F E_{\alpha}$, tells us an exposure that will be exceeded with a probability of no more than $1-\alpha$. For a normal distribution, it is defined by a point a certain number of standard deviations away from the mean:

$$
P F E_{\alpha}=\mu+\sigma \Phi^{-1}(\alpha)
$$

where $\Phi^{-1}($.$) represents the inverse of a cumulative normal distribution function (this$ is the function NORMSINV(.) in Microsoft Excel ${ }^{\mathrm{TM}}$). For example, with a confidence level of $\alpha=99 \%$, we have $\Phi^{-1}(99 \%)=2.33$ and the worse case exposure is 2.33 standard deviations above the expected future value (EFV) (effectively defined here by $\mu)$.

ii) Expected positive exposure (EPE)

The definition of exposure is:

$$
E=\max (V, 0)=\max (\mu+\sigma Z, 0)
$$

The EPE (sometimes known as EE) defines the expected value over the positive future values and is therefore:

$$
E P E=\int_{-\mu / \sigma}^{\infty}(\mu+\sigma x) \varphi(x) d x=\mu \Phi(\mu / \sigma)+\sigma \varphi(\mu / \sigma)
$$

where $\varphi($.$) represents a normal distribution function and \Phi($.$) represents the$ cumulative normal distribution function. We see that EPE depends on both the mean and the standard deviation; as the standard deviation increases so will the EPE. In the special case of $\mu=0$, we obtain: $E P E_{0}=\sigma \varphi(0)=\sigma / \sqrt{2 \pi} \approx 0.4 \sigma$.
The above formulas are used in Spreadsheet 11.2.

iii) Average EPE

The above analysis is valid only for a single point in time. Suppose we are looking at the whole profile of exposure defined by $V(t)=\sigma \sqrt{t} Z$ where σ represents the annual standard deviation (volatility). The average EPE (AEPE), integrating over time, would be defined by:

$$
A E P E \times T=\varphi(0) \int_{0}^{T} \sigma \sqrt{t} d t=\frac{1}{\sqrt{2 \pi}} \sigma \frac{2}{3} T^{3 / 2}
$$

Leading to:

Online appendices from "The xVA Challenge" $4^{\text {th }}$ edition by Jon Gregory

$$
A E P E=\frac{2}{3 \sqrt{2 \pi}} \sigma \sqrt{T}
$$

APPENDIX 12B: Simple representation of exposure profiles

i) Forward

Suppose we want to calculate the exposure on a forward contract and assume the following model for the evolution of the future value of the contract:

$$
d V(t)=\mu d t+\sigma d Z
$$

where μ represents a drift and σ is a volatility of the exposure with $d Z$ representing a standard Brownian motion. Under such assumptions the future value at a given time t in the future will follow a normal distribution with known mean and standard deviation:

$$
V(t) \sim N(\mu t, \sigma \sqrt{t}) .
$$

We therefore have simple expressions for the PFE and EPE following from the formulas in Appendix 11A.

$$
\begin{gathered}
P F E_{t}^{\alpha}=\mu t+\sigma \sqrt{t} \Phi^{-1}(\alpha) . \\
E P E_{t}=\mu t \Phi\left(\frac{\mu}{\sigma} \sqrt{t}\right)+\sigma \sqrt{t} \varphi\left(\frac{\mu}{\sigma} \sqrt{t}\right) .
\end{gathered}
$$

These formulas are used to generate the analytical approximation for the FX forward in Spreadsheet 15.8.

ii) Swap

Following the above example and assuming zero drift, an approximation to a swap contract is to assume that the future value at a given time is normally distributed according to:

$$
V(t) \sim N(0, \sigma \sqrt{t}(T-t)) .
$$

where the $(T-t)$ factor corresponds to the approximate duration of the swap of maturity T at time t. This assumes that the expected future value is zero at all future dates which in practice is the case for a flat yield curve (interest rates the same for all maturities). We can show that the maximum exposure is at $s=T / 3$ by differentiating the volatility term:

$$
\begin{gathered}
\frac{d}{d t}\left(\sqrt{t_{\max }}\left(T-t_{\max }\right)\right)=\frac{1}{2 \sqrt{t_{\max }}}\left(T-t_{\max }\right)-\sqrt{t_{\max }}=0 . \\
t_{\max }=T / 3 .
\end{gathered}
$$

APPENDIX 11C: Example exposure calculation for a cross-currency swap

Combined the results in the two previous Appendices, we consider a cross currency swap to be a combination of the approximate FX forward and interest rate swap positions.
The FX forward future value follows $N\left(0, \sigma_{F X} \sqrt{t}\right)$ and each (fixed) interest rate swap follows $N\left(0, \sigma_{I R} \sqrt{t}(T-t)\right)$. Assuming a correlation of ρ between future value of each, the cross-currency swap future value will be given by:

$$
V(t) \sim N\left(0, \sqrt{\begin{array}{c}
\sigma_{F X}^{2} t+\sigma_{I R 1}^{2} t(T-t)^{2}+\sigma_{I R 2}^{2} t(T-t)^{2}+2 \rho \sigma_{F X} \sigma_{I R} t(T-t) \\
+2 \rho \sigma_{F X} \sigma_{I R 2} t(T-t)+2 \rho \sigma_{I R} \sigma_{I R 2} t(T-t)^{2}
\end{array}}\right) .
$$

which is used to compute the PFE shown in Spreadsheet 11.3 using the result in Appendix 11A.

APPENDIX 11D: Simple netting calculation

As discussed in Appendix 11A that the EPE of a normally distributed random variable is:

$$
E P E_{i}=\mu_{i} \Phi\left(\mu_{i} / \sigma_{i}\right)+\sigma_{i} \varphi\left(\mu_{i} / \sigma_{i}\right)
$$

Consider a series of independent normal variables representing transactions within a netting set (NS). They will have a mean and standard deviation given by:

$$
\begin{gathered}
\mu_{N S}=\sum_{i=1}^{n} \mu_{i} \\
\sigma_{N S}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \rho_{i j} \sigma_{i} \sigma_{j}
\end{gathered}
$$

where $\rho_{i j}$ is the correlation between the (future) values. Assuming normal variables with zero mean and equal standard deviations, $\bar{\sigma}$, and correlations, $\bar{\rho}$, the overall mean and standard deviation are given by:

$$
\left.\mu_{N S}=0 \quad \sigma_{N S}^{2}=(n+n(n-1)) \bar{\rho}\right) \bar{\sigma}^{2}
$$

Hence, since $\varphi(0)=1 / \sqrt{2 \pi}$, the overall EPE will be:

$$
E P E_{N S}=\bar{\sigma} \sqrt{n+n(n-1) \bar{\rho})} / \sqrt{2 \pi}
$$

The sum of the individual EPEs gives the result in the case of no netting (NN):

$$
E P E_{N S}=\bar{\sigma} n / \sqrt{2 \pi}
$$

Hence the netting benefit will be:

$$
\frac{E P E_{N S}}{E P E_{N N}}=\sqrt{\frac{1+(n-1) \bar{\rho})}{n}}
$$

In the case of perfect positive correlation, $\bar{\rho}=100 \%$, we obtain:

$$
\frac{E P E_{N S}}{E P E_{N N}}=\sqrt{\frac{1+(n-1))}{n}}=100 \%
$$

The maximum negative correlation is bounded by $\bar{\rho} \geq-1 /(n-1)$ and we therefore obtain:

$$
\frac{E P E_{N S}}{E P E_{N N}}=\sqrt{\frac{1-(n-1) /(n-1))}{n}}=0 \%
$$

