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APPENDIX 8A: LHP approximation and IRB formula 
 
 
i) The LHP approximation 
 
The large homogeneous pool (LHP) approximation of Vasicek (1997) is based on the 
assumption of a very large (technically infinitely large) portfolio. The loss distribution 
is defined via: 
 

Pr(ܮ < (ߠ = Φቆ
ඥ1 − (ߠ)Φିଵߩ − Φିଵ(ܲܦ)

ඥߩ
ቇ, 

 
where Φିଵ(. ) represents a cumulative normal distribution function, ܲܦ is the 
(constant) default probability and ߩ the correlation parameter.  
 
 
ii) The IRB formula details 

The Basel II internal rating based (IRB) formula given in Equation (8.1) of the book is 
based on the above approximation together with the so-called granularity adjustment 
formula of Gordy (2004). This gives a worst case default probability which is defined 
by: 

%ଽଽ.ଽܦܲ = Φቆ
Φିଵ(ܲܦ) + ඥߩΦିଵ(99.9%)

ඥ1− ߩ
ቇ −  ,ܦܲ

where the functions Φ(. ) and Φିଵ(. ) are the standard normal cumulative distribution 
function and its inverse.  

The correlation parameter above, ߩ , is linked to the default probability (ܲܦ) according 
to the following equation:  
 

ߩ = 0.12 ×
1 − exp (−50 × (ܦܲ

1 − exp (−50) + 0.24 × ൬1−
1 − exp (−50 × (ܦܲ

1 − exp (−50) ൰ 

This relationship is depicted in Figure 8.1A. 
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Figure 8.1A. Correlation as a function of PD according to the IRB formula. 
 
In Equation (8.1) in the book, the factor (ܯ,ܦܲ)ܣܯ is the maturity adjustment that 
accounts for potential credit migration and is calculated from PD and M according to: 
 

(ܯ,ܦܲ)ܣܯ =
1 + −ܯ) 2.5) × (ܦܲ)ܾ

1 − 1.5 × (ܦܲ)ܾ , 

 
where ܾ(ܲܦ) is a function of PD defined as: 
 

(ܦܲ)ܾ = [0.11852− 0.05478 × ln(ܲܦ)]ଶ. 
 
Note that the maturity adjustment is capped at 5 and floored at 1. See Figure 8.2A for 
an example of this function. 
 

 
Figure 8.2A. Maturity adjustment (MA) as a function of remaining maturity for several 
values of PD. 
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The effective remaining maturity in the case of simple instruments such as loans with 
fixed unidirectional cashflows is defined as the weighed average maturity of the 
relevant transactions given by a simple duration formula without interest rate effects: 
ܯ = ∑ ݐܨܥ /∑ ܨܥ , where ܨܥ is the magnitude of the cashflow at time ݐ. 
 
The cash flows of OTC derivatives are highly uncertain, and a more complex formula 
is required to calculate the effective maturity. This is therefore defined at the netting set 
level from the full EE profile that extends to the expiration of the longest contract in 
the netting set. If the original maturity of the longest dated contract contained in the set 
is greater than 1 year, the effective maturity is calculated according to: 
 

ܯ = 1 +
∑ ,0)ܤݐΔ(ݐ)ܧܧ )௧ೖவଵ௬ݐ

∑ ,0)ܤݐΔ(ݐ)ܧܧܧ )௧ೖஸଵ௬ݐ
, 

 
where 0)ܤ, ݐ ) is the risk-free discount factor from the simulation dateݐ  to today, Δݐ 
is the difference between time points, ܧܧ(ݐ) is the expected exposure at time kt  and 
 is the effective expected exposure (basically a non-decreasing EE defined in (ݐ)ܧܧܧ
Section 7.2.8). Similar to the general treatment above, ܯ has a cap of 5 years (a 1-year 
floor is implicitly present in the formula). Note that if the denominator in the above 
equation becomes rather small then the effective maturity can be large. This means that 
netting sets with rather small exposure up to 1 year (for example, due to the underlying 
market value being significantly negative) will have capital determined by a small 
exposure with a high maturity. For more detail, see Picoult (2005).  
 
For netting sets in which all contracts have an original maturity of less than 1 year, the 
effective maturity is set to 1 year. However, the 1-year floor does not apply to certain 
collateralised short-term exposures. The instruments included in this category are OTC 
derivatives and SFTs that have the original maturity of less than 1 year, are fully or 
nearly-fully collateralised and subject to daily re-margining. For such transactions, the 
effective maturity for a given netting set is calculated as the weighted average of the 
contractual remaining maturities, with notional amounts used as weights. 
 
We show some examples of calculations for M for different exposure profiles in Figure 
8.3A. Netting set 1 has a bullet exposure and its effective maturity is therefore slightly 
smaller than its maturity due to interest rates effects. Due to having a small EE in the 
first year,1 netting set 2 has a high effective maturity of 6.51 years, which is capped at 
5 years. Finally, netting set 3 has an effective maturity of 3.21 years, which is relatively 
small since the EE is concentrated within shorter maturities.  
 
 

                                                

1 This means that the denominator of the formula in Appendix 11.A becomes quite small resulting in 
the effective maturity being greater than the maximum maturity of the netting set (without the cap of 5 
years). 
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Figure 8.3A. Illustration of effective maturity for different 5 year EE profiles. Interest 
rates are assumed to be 5% for all maturities. EE1, EE2 and EE3 have effective 
maturities of 4.81, 5.00 and 3.21 years respectively. 
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APPENDIX 8B: Double default formula 
  
As noted above, the conditional default probability in the Basel II IRB capital formula 
is:  
 

%ଽଽ.ଽܦܲ = Φቆ
Φିଵ(ܲܦ) + ඥߩΦିଵ(99.9%)

ඥ1 − ߩ
ቇ, 

 
where it should be noted that ܲܦ and ߩ are the default probability and asset 
correlation parameter of the original counterparty (the obligor). To compute capital for 
a hedged exposure in the advanced IRB framework (BCBS 2005), it is necessary to 
calculate the conditional default probability that both the obligor and guarantor will 
default. It is also important to consider the correlation between obligor and guarantor 
as high correlations will make the double-default more likely. By assuming an 
additional asset correlation parameter of ߩ for the guarantor and an asset correlation 
between obligor and guarantor of ߩ, the following conditional joint probability 
formula using a bivariate normal distribution function Φଶ(. ) is used:  
 

Φଶ ቆ
Φିଵ(ܲܦ) + ඥߩΦିଵ(99.9%)

ඥ1 − ߩ
,
Φିଵ൫ܲܦ൯ + ඥߩΦିଵ(99.9%)

ඥ1 − ߩ
;

ߩ − ඥߩߩ
ඥ(1 − )(1ߩ − ߩ

ቇ 

 
A value of of ߩ = 50% is proposed in order to account for a wrong-way risk due to 
a correlation between the default probability of obligor and guarantor. Nevertheless, an 
operational requirement for recognition of double-default is that there is no “excessive 
correlation” between the credit quality of obligor and guarantor and double-default is 
not recognised for an exposure to a financial institution. A value of ߩ = 70%  is used 
which essentially assumes (conservatively) that the systemic risk of the guarantor is 
high. This correlation parameter is substantially higher than that for the obligor, ߩ, 
which will follow the standard calculation (Appendix 8A) and will therefore be between 
12% and 24%. A limiting case of the above formula (for example, as gPD  increases to 
unity) corresponds to the substitution approach. 
 
The double-default capital formula also includes a loss given default function, which 
corresponds to the worst case loss when pursuing recoveries from both an obligor and 
guarantor. Furthermore, the maturity adjustment component will also differ in the event 
of mismatch between the maturity of the original exposure and that of the protection or 
guarantee. Any charge for maturity mismatch would be based on the M calculated 
within the IMM approach. 
 
The Basel Committee have also proposed a simplified approach to the double-default 
formula where the capital is reduced by the following factor compared to the unhedged 
exposure case:  
 

(0.15 + 160 ×  .(ܦܲ
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The formula was calibrated to the above case and works well for small values of ܲܦ 
but can be seen to be more conservative than the unhedged case when ܲܦ > 0.531% 
(this corresponds to the above factor being greater than unity). This is illustrated in 
Figure 8.4A. 
 

 

 
 

Figure 8.4A. Double-default formula compared to Basel II adjustment factor for 
guarantor default probabilities of 0.1% (top) and 0.5% (bottom).   
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APPENDIX 8C: The standardised method 
 

The standardised method (SM) in Basel II was designed for banks that are not 
sophisticated enough for IMM approval but would like to adopt a more risk-sensitive 
approach than the CEM – for example, to account more properly for netting. Under the 
SM, one computes the EAD for derivative transactions within a netting set, as a 
combination of “hedging sets”, which are positions that depend on the same risk factor. 
Within each hedging set, offsets are fully recognised but netting between hedging sets 
is not accounted for. As with the CEM, collateral is only accounted for with respect to 
the current MTM component and future collateral is not specifically considered. The 
SM is not particularly common (see Figure 8.2 in the book), as banks tend to use the 
simpler CEM approach or the more sophisticated IMM. Moreover, some regulators 
have not allowed the standardised approach to be used. The SM defines EAD as: 
 

ܦܣܧ = ߚ ݔܽ݉× ܯܶܯ − ܧܴܲ|,ܥ − |ܥܴܲ × ܨܥܥ


൩ 

 
Where ܯܶܯ and ܥ represent the current market value of trades in the netting set and 
current market value of all collateral positions assigned against the netting set 
respectively. The terms |ܴܲܧ −  | represent a net risk position within a “hedgingܥܴܲ
set” ݅ which forms an exposure add-one then multiplied by a conversion factor ܨܥܥ 
determined by the regulators according to the type of risk position. Finally, ߚ is the 
supervisory scaling parameter, set at 1.4, which can be considered similar to the alpha 
factor discussed in Chapter 8. 
 
A hedging set is defined as the portfolio risk positions of the same category (depending 
on the same risk factor) that arise from transactions within the same netting set. Each 
currency and issuer will define its own hedging set, within which netting effects are 
captured. However, netting between hedging sets is not accounted for. Instruments with 
interest rate and foreign exchange risk will generate risk positions in these hedging sets 
as well as their own (such as equities or commodities for example). Within each 
hedging set, offsets are fully recognized; that is, only the net amount of all risk positions 
within a hedging set is relevant for the exposure amount or EAD. The long positions 
arising from transactions with linear risk profiles carry a positive sign, while short 
positions carry a negative sign. The positions with non-linear risk profiles are 
represented by their delta-equivalent notional values. The exposure amount for a 
counterparty is then the sum of the exposure amounts or EADs calculated across the 
netting sets with the counterparty. The use of delta-equivalent notional values for 
options creates a notable difference compared with the CEM.  
 
As with the CEM, collateral is only accounted for with respect to the current MTM 
component and future collateral is not specifically considered. The calibration of credit 
conversion factors (CCFs) is assumed for a 1-year horizon on at-the-money forwards 
and swaps because the impact of volatility on market risk drivers are more significant 
for at-the-money trades. Thus, this calibration of CCFs should result in a conservative 
estimate of PFE. Supervisory CCFs are shown in Table 8.1A. 
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Table 8.1A. Credit conversion factors (CCFs) for financial instrument hedging sets. 
These are given in paragraphs 86-88 of Annex 4 in BCBS (2006). 
 
Instrument type CCF 
Foreign exchange 2.5% 
Gold 5.0% 
Equity 7.0% 
Precious metals (except gold) 8.5% 
Electric power 4.0% 
Other commodities (except precious metals) 10.0% 
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APPENDIX 8D: Treatment of EAD for repo transactions. 
 
For repo-style transactions, the EAD is calculated as the difference between the market 
value of the securities and the collateral received, and given by 
 

ܦܣܧ = 1)ܯܶܯ,0]ݔܽ݉ + ℎ௦) − 1)ܥ − ℎ)], 
  

where ℎ௦ is the haircut on the security and ℎ  is the haircut on the collateral. The 
haircuts must be applied to both the exposure and collateral received in order to account 
for the risk arising from an appreciation in value of the underlying exposure, and 
simultaneous decline in value, of collateral received as a result of future market 
movements. Banks may be permitted to calculate haircuts themselves using internal 
models. In such cases, the relevant confidence level should be 99% and the minimum 
time horizon 5 days. 
 
To better account for netting, as an alternative method to the use of haircuts as above, 
banks may take a VAR-based approach to reflect the price volatility of the exposure 
and collateral received. Under the VAR-based approach, the EAD or exposure can be 
calculated, for each netting set, as 
 

ܦܣܧ = max(0,ܯܶܯ− ܥ +  ,(ܴܣܸ
    

where ܯܶܯ and ܥ again represent the current market value of trades in the netting set 
and the current market value of all collateral positions held against the netting set, 
respectively, and ܸܴܣ represents a value-at-risk type assessment of the collateralised 
position over some time horizon. For repo-style transactions, the minimum time 
horizon is five business days (rather than the ten that is standard for OTC derivatives). 
The advantage of the VAR model is to improve the rule-based aggregation under 
standard haircuts by taking into account correlation effects between positions in the 
portfolio. The VAR-based approach is available to banks that have already received 
approval for the use of internal models under the Market Risk Framework.  
 


