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1 Introduction

An important consequence of the recent financial crisis is the growing interest (and more precisely, the
necessity, both due to market volatility and regulatory constraints) for banks to include counterparty risk
in their P&L. The adjustment made to the price of an OTC derivatives transaction as a result of the risky
nature of the counterparty is known as the credit value adjustment (CVA). The CVA becomes an effective
price factor of a deal, just like the interest rate or the exchange rate and can often have a significant
impact on trading decisions. In terms of definition, CVA is essentially the expected loss faced on the trade
occurring from the default of the counterparty one is trading with (see e.g. [Gregory (2010)], [Cesari (2009)],
[Canabarro (2009)], [Pykhtin (2005)]). This would imply that the CVA is best defined as an upfront amount.
In many circumstances, however, it may be more appropriate to use a running CVA or CVA spread. The
reason is that clients may be more keen to adjust a running parameter (such as a swap rate for example)
rather than making an up-front payment 1.

Given the complexity and computation requirements imposed by accurate CVA computation, a consistent
CVA conversion framework is needed within a general CVA setup, where the CVA in question is either a
stand-alone or an incremental CVA (i.e. the CVA of the trade taking into account netting and the impact of
any other risk mitigants). In this paper, we detail that this conversion is not as trivial as it may seem, both for
theoretical and practical reasons and requires iteration. Whereas an iterative procedure is possible, a simpler
solution would be desirable in the typical framework where the CVA is calculated by Monte-Carlo simulation.
For this reason, we investigate if simpler and computationally faster methods can be used, avoiding costly
iterations. We describe upper and lower bounds on the CVA spread and discuss the relevance and accuracies
of the simpler approaches which we illustrate with pricing examples. We will show that there is a simple
method to determine the running CVA which requires no additional computation and gives results to within
2% accuracy in several test cases.

2 Running after CVA

We start by recalling how the (upfront) CVA on a risky derivative can be obtained. We then review several
intuitive proposals to convert the upfront CVA into a running CVA. This involves changing a contractual
rate in the derivative to incorporate the CVA component. The standard way of defining a CVA (in a general
setting) is as follows:

CVA(.) = VD(.)− ṼD(.), (1)

where ṼD(.) and VD(.) respectively represent the value to the bank of the derivative with and without
counterparty risk. A derivative featuring counterparty risk should always be worth less than the equivalent
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risk-free derivative. Therefore, the upfront CVA is here always considered as a positive number; this is also
the sign convention followed by Bloomberg, for instance.

2.1 Accurate method

For fixed-floating swaps, we take the convention to add the running CVA to the fixed rate as it helps
customers to better compare the offers the get from the market, although other choices can be made (for
basis swaps or floating-floating cross-currency swap, one needs to choose the leg to which the CVA spread
should be added).

Suppose c is a rate in a derivative contract (such as LIBOR or a swap rate) and c+ε is that rate adjusted
for CVA (ε may be positive or negative). In order to be properly compensated for CVA then, as pointed out
by [Arvanitis and Gregory (2001)], the following must hold:

VD(c) = ṼD(c + ε), (2)

Since the risk-free (without counterparty risk) value of the considered derivatives (or portfolio of netted
derivatives) is linear with respect to c, then we obtain:

ε DV01 = CVAD(c + ε) (3)

where DV01 stands for the present value (risk-free) of the running payment of value 12. In other words,
the running spread must act as compensation for the CVA: ε is such that it creates a P&L profit at in-
ception exactly equal to the CVA on the realized trade, that is settled at fixed rate c + ε. This typically
requires iterations, as discussed in Section 3. This above equation corresponds, for example, to the procedure
implemented in Bloomberg for the calculation of upfront CVA on a plain vanilla IRS3.

The above definition can also encapsulate the effect of other trades under a netting agreement (and
anything else of relevance, such as a collateral arrangement). In the case of netting, we can obtain via a
similar logic to the stand-alone case:

ε DV01 = CVANS+D(c + ε)− CVANS(.) (4)

where CVANS+D(c + ε) represents the CVA of the netting set including the new trade and CVANS(.)
is the CVA of the netting set before the new trade was added. The difference between these terms is often
known as the incremental CVA. Examples of both stand-alone and incremental trades will be analysed later.
We can now consider how to convert an up-front premium to a equivalent running CVA.

2.2 Risk-free duration

The upfront-to-running conversion is most easily achieved by dividing the upfront amount by a duration.
There are two possible durations measures we can choose: either the risk-free or the risky duration. The
risk-free duration is the DV01 of the above leg. Therefore, the running CVA is here defined as

εA
.= CVAD(c)/ DV01 (Method A)

The DV01 can be readily computed from the interest rate term structure and payment calendar and
should be understood as being that of the specific leg that will be adjusted to account for CVA. Although
this method is appealing due to its simplicity, the premium εA is considered to be not at risk and we therefore
expect the result to be too low.

2For non-linear products, V (c) + ε DV01 is just the first order approximation of V (c + ε)
3We are grateful to Harvey Stein, from Bloomberg L.P., for discussion on the aforementioned implementation
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2.3 Risky duration

A more realistic point of view is to assume that the premium will not be paid during the whole life of the
trade which accounts for the fact that the counterparty is not default-free. We therefore divide by the risky
duration, D̃V01, which can be computed similarly to the risk-free duration using additionally the risk-neutral
survival probability curve 4. We therefore assume:

εB
.= CVAD(c)/ D̃V01 (Method B)

The above method reflects the (static) cost of hedging. Indeed, the running CVA will finance the buying
of credit protection on the counterparty. Whether or not we can simply include this spread in the ad-hoc
leg of the underlying transaction is another question, that will be addressed below.

3 Discussion

Both methods A and B are simple and have a concrete interpretation. Method A is intuitive as we simply
convert the upfront CVA into a running payment by using the risk-free duration. This is contradictory,
however, as CVA precisely results from the non-zero probability that all the payments might not be made as
a result of counterparty risk. Method B, by contrast, features the idea that payments are at risk. However,
it does not recognise the change in CVA when the contractual rate is itself changed, and this approximation
will be too large as will be shown in more detail below. The fact that the CVA that needs to be taken into
consideration is that on the adjusted trade (that is for a receiver IRS, with fixed rate c + ε, ε ≥ 0, instead of
c) is a key point. Because none of the above method incorporate this reality, both Method A and Method B
will introduce a P&L jump. Indeed, suppose we book a receiver trade with fixed coupon modified for CVA.
Method A will lead to a P&L loss when a trade is booked whilst Method B will lead to a P&L gain.

By contrast, there exists a third method, which gives the correct result. The latter consists in iterating
over the value of the running spread, each time re-computing the CVA to satisfy Eq. (3) or Eq. (4) depending
on the type of CVA we are interested in; we refer this approach to as Method C. Unfortunately, in a realistic
CVA framework where computation resource is probably a major concern, such iteration scheme should be
avoided.

Consequently, we investigate whether there is another possible approach, that would be of similar com-
plexity than Method A or Method B, but that would limit the aforementioned P&L hit. In other words, we
seek for a competitive (but non-iterative) alternative to Method C.

4 Analytical proxy of the running CVA (stand-alone)

We start by considering stand-alone CVA and assume we are in a position where we will receive a higher
contractual rate in order to compensate us for CVA. This would be the case, for example, in a receiver swap.
Adopting this convention amounts at seeking a positive running CVA spread only. We note that the opposite
situation (such as a payer swap) or, more generally, as a result of netting effects when using incremental CVA
follows naturally from this. The upper and lower bounds derived below may simply need to be swapped, as
illustrated in the Example section.

4.1 Closed-form bounds on the running CVA

In this section, we derive bounds to the correct running CVA, ε. We are considering the case where the CVA
of a derivative, D, is an increasing function of the fixed rate, that is CVAD(c) ≤ CVAD(c + ε) where c is the
fixed rate and ε ≥ 0 is a positive spread. On the other hand, we know that CVAD(c + ε) is upper-bounded

4In the case of quarterly payment, it is actually very close to the DV01 of the fee leg of the CDS contracted on the
counterparty to a risk-free third party
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(due to netting effects) by the sum of the CVA and the CVA on the running credit premiums only. We note
that latter quantity by CVAP (ε) and write:

CVAD(c) ≤ CVAD(c + ε) ≤ CVAD(c) + CVAP (ε) (5)

Observe that CVAP (ε) = ε CVAP (1). We will denote CVA01 = (1− R)(DV01− D̃V01) for CVAP (1) so
that we can drop the D subscript in the swap CVA, to simplify the notations (R stands for the counterparty’s
recovery rate). The detailed calculation of CVA01 is given in the Appendix. The above inequalities imply
that there exists αε in [0, 1] such that

CVAD(c + ε) = CVA(c) + εαε CVA01 (6)

The ε subscript appearing in the αε factor suggests that the function CVA(c+ε) is not linear with respect
to the spread ε. Using Eq. (3), we get

ε =
CVA(c)

DV01−αε CVA01
(7)

Further defining

εα
.=

CVA(c)
DV01−α CVA01

(8)

for α ∈ [0, 1], we get εαε
= ε. Notice that the risk-free duration proxy εA given by Method A corresponds

to the α = 0 case: εA = ε0. The running CVA εB yielded by the risky-duration approach (Method B) is
proven to be lower-bounded by ε1 and is therefore of little interest in terms of upper bound to the correct
spread; from that perspective, ε1 should always be preferred to εB

5.
The previous equations suggest that one can “proxy” αε ≈ α for some α ∈ [0, 1], and that εα is thus a

proxy of the CVA spread parametrized by the “portfolio effect factor” α. The truth is somewhere in between
the extreme cases, ε = εαε

, but αε being unknown, iterations are required; this is Method C.

4.2 Parametric Proxy Running CVA

As explained above, equations Eq. (6) and Eq. (7) are of little help in absence of the precise definition of the
function αε. By contrast, Eq. (8) defining εα is interesting in that it yields a proxy value for ε for a given α.
Without further information, one could choose a reasonable value for α with the knowledge that the higher
the α, the more conservative we are. One could simply decide to take, for example, α = 1/2. This has the
advantage of requiring only one evaluation of the CVA (rather than the six or seven evaluations that would
be required in a good root searching algorithm). We could be slightly more sophisticated and obtain an
estimate of αε via a “proxy” α∂

.= ∂ CVA(x)
∂x

∣∣∣
x=c

/ CVA01, as a result of a first order extension of CVA(c + ε)
with respect to ε. This would require two evaluations of the CVA which would still be preferable to a full
iteration.

The nice thing is that, by looking at the range using Method A and Method B, one has an idea of
the degree of uncertainty we have on the quality of the approximation. The bounds and the proxy can be
intuitively understood by looking at figures Fig. 1(a) and Fig. 1(b). They can be compared with the correct
running CVA.

5 Extension to incremental CVA and DVA

As mentioned at the beginning of Section 4.1, the sign of inequalities can be reversed if we are receiving (the
positive) or paying (the negative) CVA spread. The same applies in the case where the CVA is negative.
This can occur when quantifying incremental CVA, as a result of netting effects (adding a trade can reduce

5In the case where both CVA(c) 6= 0 and CVA01 6= 0, the equality case in ε1 ≤ εB is obtained if and only if R = 0.
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the total CVA of all trades within the ”netting set” by compensating an existing risk, hence leading to
a negative CVA contribution of the new trade. For instance, suppose we have a netting set built from a
single payer IRS EUR 5Y with fixed rate 2%. The incremental CVA on the symmetric receiver swap is an
increasing function of the swap rate, but it can be substantially negative for sufficiently low swap rates. For
example, suppose for some reason that the receiver rate is 1%, so that the trade is deeply OTM, generating
almost no exposure. On the other hand, because of netting effects, the negative PV of this trade will help
reducing the total CVA, so that the inclusion of that receiver 1% contributes negatively to the total CVA. As
the associated fixed rate increases to 2%, the incremental CVA tends to the opposite of the stand alone CVA
of the payer swap, and we get a zero total CVA. Further increasing the fixed rate of the receiver swap will
increase the total CVA, and the incremental CVA associated to the receiver swap will now increase without
bound with the fixed rate.6

As for the stand-alone case, we illustrate the procedure on two simple examples. They are receiver
fixed-floating cross-currency swaps (CCS) that will be added to a portfolio which consists in a payer CCS
swap. Figure Fig. 1(c) adresses the case where the profolio is built of the mirror trade where no CVA spread
is taken into account (this may seem not realistic, but it is an interesting case to study; suppose the sales
decided not to charge the CVA spread for the first deal to get a new client, and that the market did not
change). Because the floating leg will always compensate, we are only exposed to the fixed leg. As long as
the running spread is negative (we are receiver), we shall always pay more than what we will receive (floating
cashflows compensates, and deterministic fixed cashflows are always negative) and so our exposure decreases
by including this OTM receiver trade (negative incremental CVA). The portfolio CVA is zero in all these
cases, and the incremental CVA is just the opposite of the payer CCS CVA. In other words, in this case, the
CVA spread will be negative, and we will have CVA(c + ε) = CVA(c) = 0 and so ε = ε0.

If we consider now a partial risk compensation (eg by including a receiver CCS to a payer CCS with
different maturity for example), the scenario is slightly different, as exposed in Fig. 1(d).

Remark: We have considered the CVA spread to be included on the receive leg. Therefore, both the
DV01 and the CVA01 are positive. In the case of incremental CVA, CVA(c) is negative, and the running
CVA will be negative as well. In that case, the lower and upperbounds should be swapped.

6 Examples

In this section, we provide some examples to assess the quality of the proxy CVA. In all cases we consider a
flat credit curve of 500 bps and no CSA (collateral posting). We have considered the following examples. :

1. A 5-year receiver interest-rate swap (Rec IRS).
2. A 5-year payer interest-rate swap (Pay IRS).
3. As 2 but including DVA with our own credit curve flat at 250 bps (Pay IRS DVA).
4. Cross-currency swap (CCS).
5. Cross-currency swap incrementally with an existing netting set of 17 trades (CCS incremental).

The results are given in Table 1. Table 2 gives the corresponding relative error. We have deliberately chosen
cases where the conversion will be most challenging (long dated trades with a relatively risky counterparty).

In general, we can see that the simple approximation (α = 1/2) gives a better estimate that using simple
duration approximations for no extra computation effort and is within 2% of the exact result in all cases.
The approximation of α∂ requires only limited additional computation time and gives a result within 1% of
the actual result in all cases. Hence, requiring a full iterative solution is not really necessary in light of many
of the other uncertainties involved in CVA computation.

6The inclusion of DVA (own default risk) can have a similar impact as has been well-documented see, for exam-
ple, [Gregory (2009)]

5



α Pay IRS Rec IRS Rec IRS DVA CCS CCS incremental
0 3.44 -5.35 -3.49 -44.76 -8.02
1 4.29 -6.37 -4.70 -53.01 -9.52

1/2 3.64 -5.67 -3.78 -48,54 -8,71
α∂ 3.64 -5.64 -3.78 -49.06 -8.7
αε 3.65 -5.68 -3.80 -49.5 -8.67

Table 1: Comparison of running CVA (in bps) versus α. The CVA derivative is estimated by bumping the
rate c by 10 bps. Last row (bolded values) gives the exact results.

α Pay IRS Rec IRS Rec IRS DVA CCS CCS incremental
0 -5.7 -5.8 -8.1 -9.6 -7.5
1 15.7 15.6 23.7 7.1 9.8

1/2 -0.2 -0.2 -0.4 -1.9 0.5
α∂ -0.2 -0.8 -0.4 -0.9 0.3

Table 2: Comparison of running CVA errors (in percentage) for the various approaches.

7 Conclusion

In this paper, we have focused on the conversion of the upfront CVA to a running CVA spread. We have
reviewed three intuitive methods, and explained why only the third one is theoretically sound. The problem,
however, is that it requires iterating over the running spread, hence leading to material calculation time
when the upfront CVA is not calculated with an analytical method. This is typically the case when one is
interested in the incremental CVA, or in the CVA of non-standard swaps; this is the reason why Monte Carlo
simulations are used in standard CVA systems. The CVA calculation time is too expensive in this case to
allow for iterations (just think about the case where we are interested in the incremental CVA on a large
portfolio). For all these reasons, it is interesting to work out proxies to the running CVA spread, which do
not require these iterations.

We have derived some closed-form bounds on the running CVA based on a parametric function, which
can be used to derive a closed-form proxy of the running CVA, together with some confidence level we can
have in the above proxy. The proxy is shown to perform very well on quite different kind of swaps, both for
stand-alone and incremental CVA, giving results with no more than 2% error with no additional computation
effort. The proxy and its bounds can be easily computed without iteration and can be graphically understood
based on simple figures. This means that CVA desks can calculate running premiums with no additional
computation effort, limiting a CVA hit in the P&L and preventing trades running away from the relevant
trading desks.

8 Disclaimer

This paper expresses the view of the authors and does not necessarily reflect the opinion of their respective
employers.

9 Appendix: CVA01

Approximating the continuous integral by a discrete sum, the quantity CVA01 can be obtained as follows:

CVA01 = (1−R)
N∑

i=1

(Si−1 − Si)DF (0, ti)
N∑

j=i

Notj DF (ti, tj)τj = (1−R)
N∑

i=1

Noti(1− Si)DF (0, ti)τi (9)
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= (1−R)
N∑

i=1

Noti DF (0, ti)τi − (1−R)
N∑

i=1

Noti SiDF (0, ti)τi = (1−R)(DV01− D̃V01) (10)

where DF (t1, t2) = DF (0, t2)/DF (0, t1) is the ratio of discount factors, τj is the coupon accrual for the
j-th period, Noti is the associated notional amount and Si is the risk-neutral survival probability curve of
the counterparty up to time ti. The sum ranges over the payment dates of the fixed coupons, and we had
DV01 =

∑N
i=1 DF (0, ti)τi.

Clearly, because α belongs to then [0, 1] interval,

α CVA01 ≤ CVA01 ≤ DV01 (11)

and so for an ATM swap, εα ≥ 0 for a receiver, as expected.
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