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A recent trend in pricing counterparty credit risk for OTC derivatives has 
involved taking into account the bilateral nature of the risk so that an 
institution would reduce counterparty risk in line with their own default 
probability. Done to an extreme, this practice has worrying implications 
such as causing a derivatives portfolio with counterparty risk to be more 
valuable than the equivalent risk-free positions. In this paper, we argue 
that to apply naïve bilateral pricing of counterparty risk is rather 
dangerous and we present a simple realistic approach for pricing and 
hedging counterparty risk in OTC derivatives accounting for default of 
both parties. 

 
 
Counterparty credit risk is the risk that a counterparty in a financial contract will 
default prior to the expiration of the contract and fail to make future payments. 
Counterparty risk is taken by each party in an over-the-counter (OTC) derivatives 
contract and is present in all asset classes, including interest-rates, foreign-exchange, 
equity derivatives, commodities and credit derivatives. Given the recent decline in 
credit quality and heterogeneous concentration of credit exposure, together with high 
profiles defaults of Enron, Parmalat and Bear Stearns, the topic of counterparty risk 
management remains an important one. 
 
A typical financial institution, whilst making use of risk mitigants such as 
collateralisation and netting, will still take a significant amount of counterparty risk 
which needs to be priced and risk managed appropriately. Over the last decade, 
financial institutions have built up their capabilities for handling counterparty risk and 
active hedging has also become common, largely in the form of buying credit default 
swap (CDS) protection to mitigate large exposures (or future exposures). Most banks 
have a dedicated counterparty risk management unit which will charge a premium to 
each business line to bear the counterparty risk of a new trade, taking advantage of 
portfolio level risk mitigants such as netting and collateralisation. Such might operate 
partly on an actuarial basis, making use of the diversification benefits of the 
exposures, and partly on a risk-neutral basis hedging key risks such as default and FX 
volatility.  
 
A typical counterparty risk business line will have significant reserves held against 
some proportion of expected and unexpected losses, taking into account hedges. The 
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recent significant increases in credit spreads, especially in the financial space will 
have increased the reserves and/or future hedging costs associated with counterparty 
risk. It is perhaps not surprising then that many institutions, notably banks, are 
increasingly considering the two-sided or bilateral nature when quantifying 
counterparty risk. A clear advantage of doing this is the it will dampen the impact of 
significant credit spread increases by offsetting the associated increase in required 
reserves. However, it means that they are attaching economic value to the fact that, 
just as they may make a loss when a counterparty defaults, they would gain if they 
themselves default. Whilst it is strictly true that they do indeed gain from their own 
default, it might at first glance appear unusual to price this component. In this paper, 
we will make a quantitative analysis of the pricing of counterparty risk and attempt to 
draw conclusions about the validity of bilateral pricing.  
 
 
Unilateral Counterparty Risk 
 
The reader is referred to the article of Pykhtin and Zhu [2006] for an excellent 
overview of measuring counterparty credit risk. We denote the current time by t  and 
use ),( TsV  to describe the unknown value of a derivatives position with a final 
maturity date of T  with Tst  . We note that the analysis is general in the sense 
that ),( TsV  could indicate the value of a single derivatives position or a portfolio and 
could also incorporate effects such as netting and collateralisation. In the event of 
default then an institution must consider the following two situations. 
 

0),( TsV  In this case the trade is in the institutions favour (positive present 
value) and they will close out the position but retrieve only a recovery 
value, CTsV ),(  with C  a percentage recovery fraction.  

 
0),( TsV  In this case the trade is valued against the institution and there is no 

additional loss although they are still obliged to settle the outstanding 
amount (they do not gain from the counterparty defaulting).  

 
We can therefore write the payoff in default as   ),(),( TVTV CCC   where C  is 
the default time of the counterparty2. The risky value of a trade or portfolio of trades 
where the counterparty may default at some time in the future is then: - 
 

  
  ),(),(),(1),(1),(~ TVTVtVTtVETtV CCCCTT CC

  (1) 
 
The first term in the expectation is simply the risk-free value conditional upon no 
default before the final maturity. The second component ),(1 CT tV

C
   corresponds to 

the cashflows paid before the default time. The final components can be identified as 
the default payoff as described above. 
 
Re-arranging the above equation, we obtain: - 
 

                                                
2 We use the notation )0,max(xx   and )0,min( xx  . 
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This allows us to express the risky value as the risk-free value less an additional 
component. This component is often referred to (for example see Pykhtin and Zhu 
[2006]) as the credit value adjustment (CVA). As first discussed by Sorensen and 
Bollier [1994], an analogy is often made that the counterparty is long a series of 
swaptions. Let us denote the standard CVA in this unilateral case as: - 

   ),()1(1 TVECVA CCTunilateral C
     (3) 

We might compute the expectation under the risk-neutral or the real probability 
measure, in the latter case using historical analysis of price data rather than market 
implied parameters. Traditionally the real measure is often used in risk management 
applications involving modelling future events such as exposures. However, since the 
default component of the CVA is likely to be hedged, the risk-neutral measure might 
be more appropriate. Since most counterparty risk books may hedge only the major 
risks and are therefore part risk-neutral, part actuarial we would argue that the 
measure to use in equation (3) becomes a rather subtle question. Having noted this 
point, since this paper is concerned with pricing then we will use the risk-neutral 
measure and will argue that this is precisely where the objection to bilateral pricing 
originates. 
 
 
Bilateral Counterparty Risk 
 
A possible over-simplification of the unilateral treatment is that it neglects the fact 
that the institution may default before their counterparty, in which cases the latter 
default would be irrelevant to them. Furthermore, the institution could be argued to 
actually make a gain in their own default since they will pay the counterparty only a 
fraction of the value of the contract. The payoff to the institution in their own default 
is   ),(),( TVTV IIA   with I  and I  representing their own default time and 
associated recovery percentage respectively.  
 
Denoting by ),min(1

IC    the “first-to-default” time of both the institution and 
counterparty and assuming that simultaneous defaults are not possible, then the 
valuation equation becomes: - 
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, (4) 

 
We can identify the first component in equation (4) as being the same adjustment as 
before conditioned on no default of the institution. The additional term corresponds to 
the “gain” made by the institution in the event of their default (conditional on no 
previous counterparty default). We note that the asymmetry of the future distribution 
of ),( 1 TV   (for example, due to forward rates being far from spot rates) should be 
important in determining the relative value of the two terms above in addition to the 
relative default probabilities. 
 
An obvious implication of the bilateral formula is that the overall CVA may be 
negative, i.e. actually increase the overall value of the derivatives positions. Another 
worrying implication of the above symmetry is that the overall amount of 
counterparty risk in the market would be zero3. A practical objection to the above 
formula would be that, whilst the risk-neutral default component of the unilateral 
CVA can be hedged by buying CDS protection on the counterparty, the additional 
term in the bilateral formula would require an institution to sell CDS protection on 
themselves. Whilst it is not directly possible for an institution to short its own debt, 
the argument could be made that they could hedge by selling protection on a highly 
correlated credit; for example banks might sell protection on (a basket) of other banks. 
Such a hedge would cause a bank to lose money when, in line with their presumed 
wish to outperform their competitors in equity returns, their credit spread tightens 
relative to the basket. 
 
In order to be able to study the above idea, we extend the CVA formula to allow for a 
simultaneous default of both parties and denote the time of this event as  . The 
overall idea of the approach is that an institution should achieve a reduction in their 
CVA according to the hedgeable components only4 (this could be thought of in terms 
of a beta or as systemic over idiosyncratic risk). In the presence of joint default the 
valuation formula becomes: -  
 

                                                
3 This assumes that all parties have the same pricing measure in which case the two sides to a trade or 
netted portfolio of trades will always have equal and opposite CVAs. 
4 An institution selling protection on a correlated basket of names will having a gain/loss when their 
own spread widens/tightens with respect to the basket. 
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with ),,min(1  IC . The final term corresponds to the fact that in the event of 
joint default, the value of the derivatives position is essentially cancelled, with a 
recovery value paid to whichever party is owed money. It can be shown that due to 
the size of this term that this bilateral term above will always be between the 
unilateral adjustment and the previous bilateral adjustment with no joint defaults5. 
 
 
Example 
 
The above formulae are rather general so in order to get some intuition on the 
problem we now apply a simple model. We first assume that the probabilities of 
default are determined by: - 
  

 ssQ CC )(exp)(   ,   C  
 ssQ II )(exp)(   ,    I    
 ssQ   exp)( ,      (6a, 6b, 6c) 

 
where C , I  and   are deterministic default intensities which could readily be 
made time dependent or, in a more complex approach, stochastic. The joint default 
probability   could be calculated from the prices nth to default baskets or (under the 
assumption that this will be systemic event) senior tranches of a relevant credit index. 
Perhaps more practically,   could be determined empirically via the proportion (beta) 
of the credit spread of the institution that is hedgeable via CDS or bonds of correlated 
names. After this then C  and I  can be calibrated to the credit default swap (CDS) 
spreads of the counterparty and institution respectively. Since the hazard rates will 
normally be calibrated to CDS quotes and the recovery rate derivatives under standard 
ISDA documentation is pari passu with senior debt6 then we do not expect a 
considerable impact from differing recovery assumptions. 
                                                
5 This follows from C

cACI TVTVTVTVTV ),()1(),(),(),(),()1(    . 
6 We note that there is some additional complexity regarding this point. Firstly, since CDS protection 
buyers must buy bonds to deliver then a “delivery squeeze” can occur if there is more CDS notional in 
the market than outstanding deliverable bonds. In this case, the bond price can be bid up and suppress 
the value of the CDS hedging instrument. This has been seen in many recent defaults such as Parmalat 
[2003] Delphi [2005] and for many counterparties the amount of CDS traded is indeed larger than 



 
We will make the common assumptions that the default times and value of the 
derivatives portfolio are independent. This is a rather common assumption in the case 
that there is not obvious “wrong-way risk” (which clearly exists in credit default 
swaps and certain other cases). As noted before, the approach described here could be 
combined with a “wrong-way risk” approach such as Cherubini and Luciano [2002]. 
Under the independence assumption we obtain: - 
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The most straightforward way to compute the above integral is by discretisation over 
a suitable time grid ],,.......,[ 110 Tttttt mm   : - 
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We assume that the counterparty and institution default probabilities are correlated 
according to a Gaussian copula as is standard in structured credit derivatives pricing. 
The correlation parameter is denoted by  . Following the Gaussian correlation 
assumption between C  and I  and the independence of  , the above probabilities 
can be readily computed, for example: - 
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(9) 
 
Where (.)  and (.)2d  represent the univariate and bivariate cumulative normal 
distribution functions.  
 
We finally use the simple representation ZtstsTsV   )(),(  where   and 
  are drift and volatility parameters respectively and Z  is a random variable drawn 

                                                                                                                                       
available pool of bonds. We also note that whilst CDS are settled shortly after default, derivatives 
claims go through a workout process which can last years and the final recovery achieved may be 
rather different.  



from a standard normal distribution function7. The simple assumptions above allow us 
to calculate the final required quantities as: - 
 

  )/()/(),(  sssNTsVE     (10) 
 
where (.)  represents the normal distribution function. These components are 
typically known as the expected positive exposure (EPE) and the expected negative 
exposure (ENE). We are not considering interest rates which under the independence 
assumptions simply amount to multiplicative components via discount factors.  
 
Let us assume that %40 IC   and define two parameters sets8: - 
 
Case A : %1 , %10 , %2C , %4I ,  
Case B : %1 , %10 , %4C , %2I . 
 
The (symmetric) exposure for profiles (EPE and ENE) are shown in Figure 1.  
 
Figure 1. Expected exposure profiles for Case A and Case B with %1 , 

%10  and %1 , %10  respectively.  
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We will consider three distinct CVA measures outlined below: - 
 
Unilateral : this is the standard unilateral formula given in equation (3). 
 
                                                
7 For simplicity and since this is a simple example, we ignore the usual risk-neutral restrictions For 
single cash-flow products, such as FX forwards, or products with a final large cashflow, such as the 
exchange of principal in a cross-currency swap, the maximum exposure occurs at the maturity of the 
transaction and this formula proves a good proxy for the typical exposure. Products with multiple 
cashflows, such as interest-rate swaps typically have a peak exposure between one half and one third of 
the maturity. We note that the exposure of the same instrument may vary also significantly due to 
market conditions such as the shape of yield curves. We have confirmed that the qualitative 
conclusions do not depend on the precise exposure profile chosen. 
8 The constant intensities of default are approximately related to CDS premia via )1(   . 



Adjusted Unilateral : this is the unilateral adjustment but taking into account the 
default probability of the institution, i.e. this is the first term in equation (8) with no 
joint default probability, 0 . 
 
Bilateral : The bilateral CVA given by equation (8). 
 
Initially we assume zero correlation and zero joint default probability, 0   and 
show the three CVA values in Table 1.  
 
Table 1. Unilateral and bilateral CVA values for case A and case B under the 
assumption of independence. 
 Case A Case B 
Unilateral 0.619% 2.106% 
Unilateral Adjusted 0.521% 1.923% 
Bilateral -1.409% 1.397% 

 
Case A represents a situation where the bilateral CVA is negative due to the 
institution’s higher default probability and the high chance that they will owe money 
on the contract (negative exposure due to %1 ). Case B is the opposite case and, 
since the counterparty is more risky than the institution, the bilateral CVA is reduced 
by only around one third compared to the unilateral case. We see that since Case A 
and Case B represent equal and opposite scenarios for each party, the sum of the 
bilateral adjustments is zero. 
 
Now let us consider the impact of correlation on the CVA. As shown in Figure 2, 
correlation can have a reasonably significant impact on both the unilateral and 
bilateral values. As correlation increases, we approach comonotonicity where the 
more risky credit is sure to default first. This means that in case A, the unilateral 
adjusted CVA goes to zero (the institution is sure to default first) whilst in case B it 
converges to the pure unilateral value (the counterparty is sure to default first). 
 
Figure 2. CVA as a function of correlation between counterparty and institution 
default for case A (left) and case B (right).  
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Let us now consider the impact of joint default. We show the three CVA components 
versus the joint default intensity, ),min( IC   , together with the “bilateral 
hedgeable” component which assumes that the second term in equation (7) is zero on 



account an institution being unable to short their own debt9. This means that the CVA 
is reduced by only the joint default component and not the idiosyncratic default of the 
institution. In the case of zero joint default then the bilateral hedgeable is the same as 
the unilateral adjusted CVA. 
 
Figure 3. CVA as a function of the systemic spread intensity with zero correlation. 
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We see that joint default plays a similar role to correlation and does not have a 
significant impact on the bilateral CVA. However, from looking at the bilateral 
hedgeable component, we see that it is quite possible that a substantial portion of the 
bilateral benefit comes from a component that cannot be moneterised. With no joint 
default probability then the CVA is simply the unilateral adjusted value and we must 
assume a significant joint default probability to reduce the CVA. However, we must 
also have a way to hedge this joint default component.  
 
 
Conclusion 
 
Appropriate pricing and risk management of counterparty risk is a key area for 
financial institutions and controlling the level of reserves and cost of hedging is 
critical in turbulent times. However, realistic pricing and management of risk should 
always be the key objective. In this paper we have argued that, whilst there should 
some possibility to reduce counterparty risk charges by the default probability of an 
institution, a full reduction taking into account bilateral risk is inappropriate. The 
argument we have made is that an institution should be able to reduce counterparty 
risk in line with the systemic component of their credit spread which, unlike the 
idiosyncratic component, is hedgeable. Using a model which represents a simple 
extension of most counterparty risk pricing approaches, we have illustrated some 
pricing behaviour. Such ideas can readily be incorporated into most counterparty risk 
pricing and management functions to attempt to have a reasonable treatment of the 
bilateral nature of this risk. 
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