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Abstract

We consider stochastic correlation models that account for the correlation smile in the

pricing of synthetic CDO tranches. These can be viewed as tractable extensions of the

one factor Gaussian copula model. We analyse these models through their conditional

default probability distributions. We also give some examples of using a three states

stochastic correlation model to fit the market and discuss some risk management is-

sues. We provide some analytical computations within the large homogeneous portfolio

approximation. Eventually, we compare the stochastic correlation model with another

popular state dependent correlation model, namely the random factor loading model.
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Introduction
The factor copula approach has proved to be a powerful tool for pricing CDOs within a semi-analytical
framework (see Gregory & Laurent [2003], Andersen, Sidenius & Basu [2003], Hull & White [2004], Laurent
& Gregory [2005]). While the factor approach might also be used in the framework of intensity or structural
models, it has been predominantly coupled with a copula approach. Though copula models fail to provide
satisfactory dynamics of credit spreads and exhibit various kinds of time instability, they usually allow
independent specification of the dependence structure between the default times and the marginal credit

curves, the latter being considered as market observables (single name CDS or index CDS).
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Thus, despite the previous drawbacks, the one factor Gaussian copula (see Li [2000]) has become a market
standard for the pricing of CDOs. The development of a liquid market of standardized CDO tranches

has shown the Gaussian copula model to be inadequate and there has been a build up of literature on
correlation skew modelling and a reliance by market practitioners on base correlation approaches. The major
developments and movements in the tranche market during 2005 and the already well-known deficiencies of
the market standard modelling approach have led to even stronger calls than before for second generation
models for CDO pricing based on realistic dynamics of market variables (i.e. credit spreads). This is clearly
an important direction but, perhaps not surprisingly, researchers have tried to extend gradually the standard
model to incorporate some skew features. The aim of this paper is clearly related to the latter approach,
where we will give an overview of the general framework of "copula skew models", explain some connections
between different ideas and describe results using one such model. This approach can be considered as
complementary or an alternative to the base correlation approach which is currently the predominant (and

perhaps sole) method used to industrially price and risk manage CDO and CDO squared tranches. We see
this as a next step on a long path leading to next generation models, which will exist outside the copula
framework.

Whereas in the one factor Gaussian copula correlation is a deterministic parameter, further extensions
involve stochastic correlation (Andersen and Sidenius [2005b], Burtschell et al. [2005], Schloegl [2005])
or state dependent risk exposure (Andersen and Sidenius [2005a], Laurent and Gregory [2005]). The risk
exposures may or may not be associated with a factor structure and may or may not be factor dependent.
When the correlation is stochastic and independent of the factor, we will talk of a stochastic correlation
model. When the correlation depends upon the factor, we will talk of a state dependent correlation model.

Examples of such models are provided by Turc et al. [2005] or Andersen and Sidenius [2005a]. In this paper,
we provide a thorough analysis of a three states stochastic correlation model and subsequently compare it
with the random factor loading model. More precisely, the paper is organized as follows.

• The first section focuses on the main features of stochastic correlation models. We specialize this
framework to a three states specification of the correlations. Since the previous model belongs to the
factor copula class, we show that the probability generating function (pgf thereafter) of the aggregate
loss can be easily computed, leading to semi-analytical CDO tranche premiums. Stochastic orders
properties are used to show monotonicity results of CDO tranche premiums with respect to model
parameters.

• Section 2 provides some market fits of the stochastic correlation model. We also study the stability
of calibrated parameters through time, including the 2005 correlation crisis and discuss the credit
deltas associated with the different tranches.

• Section 3 provides analytical computations of the distribution function of a large homogeneous port-
folio, of zero-coupon CDO tranche premiums and of the marginal compound correlation curve, these
being derived under the large homogeneous portfolio approximation.

• Section 4 aims at comparing stochastic and state dependent correlation models. We recall some useful
properties of the random factor loading model, including large homogeneous portfolio approximations.
We subsequently compare the large homogeneous portfolio distributions within the stochastic corre-
lation and the random factor loading models. We also compare the two models through the marginal
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compound and local correlation curves. This shows that while both models can be reasonably well
fitted to market quotes, they would lead to significant differences for non standard tranches.

1 Factor copulas and stochastic correlation
We detail here the computation of the loss distributions associated with a three states stochastic correlation
model. This model is an extension of the one factor Gaussian copula model and the same semi-analytics
techniques also apply here. The model involves three parameters and, thanks to stochastic orders theory,
we briefly discuss in this section how the parameters drive the CDO tranche premiums.

1.1 One factor Gaussian copula
In the one factor Gaussian copula with flat correlation parameter ρ, we consider some latent variables:

Vi = ρV +
p
1− ρ2V̄i, i = 1, . . . , n, (1.1)

where V, V̄i, i = 1, . . . , n are independent standard Gaussian random variables. We denote by F (t) = Q(τ i ≤
t) the marginal default probability for time horizon t4 and define default times τ i of names i = 1, . . . , n by
setting τ i = F−1 (Φ(Vi)) where Φ is the standard Gaussian distribution function. The previous one factor
Gaussian copula model leads to a semi-explicit pricing of CDO tranches (see Gregory and Laurent [2003],
Andersen et al [2003], Hull and White [2004]) but does not match the market prices (see Table 1).

Tranche Market Gaussian

[0-3%] 24.0% 19.3%

[3-6%] 82.5 234.7

[6-9%] 26.5 82.0

[9-12%] 14.0 32.9

[12-22%] 8.75 6.99

[22-100%] 3.53 0.05

Table 1. Illustration of the inability of a flat correlation model to fit the iTraxx market tranche quotes.
The market quotes are as of the 30-Aug-05 and apart from the equity tranche are expressed in basis points
par annum (bp pa). As usual, the equity tranche is quoted as an up-front premium, in addition to the
contractual 500 bp pa. The coupon payment frequency is quarterly. Maturity date is 20 June 2010 (iTraxx
series 3). The correlation in the Gaussian copula model was chosen via a least squares fit to the traded
tranche premiums. Note that the [22-100%] tranche is not traded but can be implied from the rest of the
capital structure and level of the index.

Generally, the one factor Gaussian copula model underprices the equity and senior tranches and overprices
the mezzanine. The one factor Gaussian copula model has therefore been extended in various directions. A

4For notational simplicity, we consider here equal credit spreads and a unique correlation parameter ρ
(flat correlation).
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first idea is to use more complex correlation structures as in Gregory and Laurent [2004]. Hull and White
[2004], Kalemanova et al. [2005] consider other distributions for the factor V and the idiosyncratic risks V̄i,

such as Student t or Normal Inverse Gaussian. Burtschell et al [2005] review some popular factor copula
models.

1.2 Stochastic correlation models
In the following, we consider a general class of stochastic correlation models which we believe offer different
ideas and like stochastic volatility models aim to explain rather than simply fit the market.

Let us firstly state the general structure of a stochastic correlation model. It involves some latent variables
Vi:

Vi = ρ̃iV +

q
1− ρ̃2i V̄i, i = 1, . . . , n, (1.1)

where n is the number of names, V, V̄i, i = 1, . . . , n independent standard Gaussian random variables, ρ̃i are
some random variables taking values in [0,1], independent from the V, V̄i, i = 1, . . . , n.

Thanks to the independence between ρ̃i and V, V̄i, for any i = 1, . . . , n, given ρ̃i, Vi follows a standard
Gaussian distribution. Thus, the marginal distribution of Vi is also standard Gaussian. This eases calibration
and implementation of the models. We can then still model the default times τ i, i = 1, . . . , n as:

τ i = F
−1
i (Φ(Vi)) , (1.2)

where Φ is the Gaussian cumulative density function. Stochastic correlation models are related to mixtures
of Gaussian copulas. We refer to Burtschell et al. [2005] for further discussion5. Let us remark that we
remain in a copula and thus static framework. Such a static framework is well suited for European type
options and thus for CDOs but does not extend readily to the pricing of payoffs that depend on the path
of the aggregate loss such as forward starting CDOs. We emphasize that this feature is not specific to the
stochastic correlation model but applies to all one factor copula approaches.

1.3 Three states stochastic correlation
For practical implementation, let us consider the following model which is an extension of Burtschell et al
[2005] or Schloegl [2005]. For simplicity, we restrict to the case where the dependence structure is symmetric:

Vi = ((1−Bs)(1−Bi)ρ+Bs)V +
³
(1−Bs)

³
(1−Bi)

p
1− ρ2 +Bi

´´
V̄i i = 1, . . . , n, (1.3)

where V̄1, . . . , V̄n, V,Bs, B1, . . . , Bn are independent, V̄1, . . . , V̄n, V are standard Gaussian random variables,

Bs, B1, . . . , Bn are Bernoulli random variables and 0 ≤ ρ ≤ 1. We denote by q = Q(Bi = 1) and
qs = Q(Bs = 1). Thus:

ρ̃i = (1−Bs)(1−Bi)ρ+Bs, (1.4)

5Although this model corresponds to a mixture of copulas, this is not the same idea as applied in base
correlation or the "Mixture of Expected Losses" approach suggested by Liang and Li [2005]. As shown by

Piterbarg [2003], such a model is under specified leading to inconsistencies in pricing. In the stochastic
correlation approach we propose we still can define a unique distribution of default times.
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which is indeed associated with a stochastic correlation model6 . The marginal distribution of ρ̃i is discrete,
taking value 0 with probability q(1− qs), ρ with probability (1− q)(1− qs) and 1 with probability qs.

The state where ρ̃ = 0 can be viewed as the incorporation of idiosyncratic risk as names defaulting in
this state do so with no other impact on the other names. An obvious example of the importance of
this is evidenced by the spread widening and downgrades of Ford and GMAC in 2005. A knock-on effect
of this was higher equity and lower mezzanine tranches premiums in the tranche market coming from a
perception of increased idiosyncratic risk in the underlying portfolio. The above specification allows us to
apply idiosyncratic risk on a name by name basis. For example, names with wide spreads might be associated
with large proportions of idiosyncratic risk.

The underpricing of the senior tranches when using a Gaussian copula is another issue. We can see this
clearly when looking at the market premiums of increasingly senior tranches which do not decrease rapidly,
suggesting the presence of some lower bound. It can also be observed from the premiums of the senior

tranches on iTraxx and CDX which cover losses of [22-100%] and [30-100%] respectively. These tranches are
not traded but their premium can be extracted from the rest of the capital structure and the index level.
Their premiums are not negligible, even though these tranches can withstand tens of credit events7. When
Bs = 1, the correlation parameter is equal to 1. This corresponds to some sort of systemic risk. We could
question this on economic grounds since perfectly correlated names may default years apart and we become
certain on the ordering of defaults: more risky names always default before less risky names8.

1.4 Stochastic orders
Let us recall that in our stochastic correlation model, ρ̃i = (1 − Bs)(1 − Bi)ρ+ Bs. It can be proved that
increasing ρ, increasing qs or decreasing q leads to a decrease of equity tranche premiums (and an increase

of base correlation).

6It can be easily checked that (1−Bs)
³
(1−Bi)

p
1− ρ2 +Bi

´
=
q
1− ρ̃2i .

7Assuming a recovery of 30%, the iTraxx super senior tranche can withstand 39 credit events whilst 53
credit events will not yet cause a loss on CDX. Of course, lower recoveries will decrease these numbers.

8We can of course generalise this to a state of simply high correlation which part solves of the less
economically intuitive features of comonotonicity. This is clearly a way to extend the model but we have
found that in fitting to the market this value will always be very close to 1. Another way in which this
could be incorporated is via a systemic event such as described in Tavares et al. [2004] or Trinh et al.
[2005]. In this framework, with a certain probability, all names will go to default simultaneously. This has
the attraction that presumably this systemic probability is very closely related to the super senior tranche
premium. An intuitive problem with the approach is that the systemic risk is unrelated to portfolio size
and always related to default of the entire pool, irrespective of the size. There are ways to get around this
(see Elouerkhaoui [2003]), although this will destroy the natural simplicity of the approach. There are also
technical issues, most obviously that there is a cap on the systemic risk spread which is the tightest spread in

the underlying portfolio. Even if this is not a direct problem for pricing it complicates the characterisation
of the Greeks, for example the credit delta may have an unusual behaviour. Furthermore, the fact that the
systemic risk will remain unchanged as spreads move is questionable.
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The proof is based on stochastic orders theory: let us firstly consider two stochastic correlation models.
We denote by ρ̃1, . . . , ρ̃n and by β̃1, . . . , β̃n the correlation parameters. We assume at this stage the ρ̃i
i = 1, . . . , n are iid as are the β̃i, i = 1, . . . , n. We denote by F̃ρ the distribution function of the ρ̃i’s and
by F̃β the distribution function of the β̃i’s. Let us assume that F̃β(u) ≤ F̃ρ(u) for all u ∈ [0, 1]. This means
that ρ̃i ≤ β̃i with respect to first order stochastic dominance. As a consequence, there exist some non-
negative random variables ν1, . . . , νn independent from V, V̄1, . . . , V̄n such that β̃i = ρ̃i + νi, i = 1, . . . , n
where the previous equalities hold in distribution9. Conditionally upon ρ̃1, . . . , ρ̃n, ν1, . . . , νn the latent
variables in the two models are conditionally Gaussian, with correlation parameters equal to ρ̃1, . . . , ρ̃n and
ρ̃1 + ν1, . . . , ρ̃n + νn. We thus have more dependence with respect to the supermodular order in the second
model10 . Thanks to the previous analysis and since ρ̃i = (1−Bs)(1−Bi)ρ+Bs, we conclude that increasing
ρ, increasing qs or decreasing q will lead to an increase of dependence with default times with respect to the
supermodular and thus to a decrease of equity tranche premiums (see Burtschell et al [2005] for a detailed

discussion).

1.5 Computation of loss distributions
We show here that the pgf of the accumulated losses can be easily computed up to a one dimensional
numerical integration. Since CDO tranche premiums only involve loss distributions over different time
horizons (see Gregory and Laurent [2003]), this paves the way for a semi-analytical computation of CDO
tranche premiums.

In the above stochastic correlation model, default times are independent upon V,Bs. We are thus in a factor
copula framework. Though this is seemingly a two factor framework, we show that the dimensionality of
the model remains equal to one.

We denote the conditional default probabilities by pi|V,Bst = Q (τ i ≤ t | V,Bs). Since Q (τ i ≤ t | V,Bs) =
Q
¡
Vi ≤ Φ−1 (Fi(t)) | V,Bs

¢
, we can write the conditional default probabilities as:

p
i|V,Bs
t = (1−Bs)×

Ã
(1− q)Φ

Ã
Φ−1 (Fi(t))− ρVp

1− ρ2

!
+ qFi(t)

!
+Bs1V≤Φ−1(Fi(t)). (1.5)

As can be seen in Burtschell et al. [2005], Hull and White [2005], the distributions of conditional default
probabilities are the main drivers of CDO prices within factor copula models. Not surprisingly, this is also
the case of the three states stochastic correlation model.

Let us now detail the computation of the pgf of the accumulated losses L(t) =
Pn
i=1Mi1τi≤t, where

Mi = 1− δi is the risk exposure for name i and δi the corresponding recovery rate, which is assumed here

9We simply set νi = F̃
−1
β

³
F̃ρ (ρ̃i)

´
− ρ̃i, i = 1, . . . , n.

10Increasing any non diagonal covariance term in a Gaussian vector with zero mean leads to an increase
of dependence with respect to the supermodular order. We conclude by using the invariance of the super-
modular order under mixing.
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to be deterministic11 :

ψL(t)(u) = E
h
uL(t)

i
= qsE

h
uL(t) | Bs = 1

i
+ (1− qs)E

h
uL(t) | Bs = 0

i
.

Let us remark that:

E
h
uL(t) | V,Bs = 0

i
=

nY
i=1

³
q
i|V,Bs=0
t + p

i|V,Bs=0
t uMi

´
,

where pi|V,Bs=0t = (1− q)Φ
µ
Φ−1(Fi(t))−ρV√

1−ρ2

¶
+ qFi(t) and q

i|V,Bs=0
t = 1− pi|V,Bs=0t .

As a consequence, the termE
£
uL(t) | Bs = 0

¤
=
R
RE

£
uL(t) | V = v,Bs = 0

¤
ϕ(v)dv, where ϕ is the Gaussian

density, can be computed by some quadrature technique.

Let us now consider the term E
£
uL(t) | Bs = 1

¤
. For notational simplicity, we assume that the names

are ordered, with name 1 associated with the highest default probability and name n associated with the
lowest default probability, i.e. F1(t) ≥ . . . ≥ Fn(t). Conditionally on Bs = 1, ρ̃i = 1, Vi = V , thus
τ i = F

−1
i (Φ(V )), i = 1, . . . , n. In the comonotonic case, the accumulated losses can only take n+ 1 values:

0,M1,M1+M2, . . . ,M1+ . . .+Mn. Conditionally on Bs = 1, the loss equal toM1+ . . .+Mi−1 occurs with
probability Fi−1(t)−Fi(t). The probability of no losses occurring is 1−F1(t) while the probability of a loss
equal to M1 + . . .+Mn is Fn(t). This provides an analytical expression12 of the conditional on Bs = 1 pgf
E
£
uL(t) | Bs = 1

¤
as:

1− F1(t) + (F1(t)− F2(t))uM1 + . . .+ (Fi−1(t)− Fi(t))uM1+...+Mi−1 + Fn(t)u
M1+...+Mn . (1.6)

This completes the computation of the pgf of the loss distribution ψL(t). Going back to the loss distribution
is then rather straightforward, especially when the risk exposures are equal M1 = . . . = Mn = M since

ψL(t)(u) is a polynomial of u
M whose coefficients can be easily computed by recursion.

2 Market fits
We provide here some empirical results related to the ability of the three states stochastic correlation model
to fit the market and to the risk management within such a model.

2.1 Calibration to market quotes
We now show some fits of the three parameter stochastic correlation model to five years iTraxx and CDX
tranche premiums. We took market spreads on the date in question (column two) and assumed a flat recovery
of 40%. The premiums were computed using the semi-analytical technique described above, taking into
account the differences in individual spreads and discounting effects. For simplicity, we provide the average

11Thus, the distribution of L(t) is discrete. One could easily cope with stochastic recovery rates and
compute the characteristic function of the aggregate losses in that framework.
12We might have proceeded as above, starting from p

i|V,Bs=1
t = 1V≤Φ−1(Fi(t)), i = 1, . . . , n and then

compute E
£
uL(t) | Bs = 1

¤
as
R
RE

£
uL(t) | V = v,Bs = 1

¤
ϕ(v)dv. However, when the default probabilities

Fi(t) differ, E
£
uL(t) | V = v,Bs = 1

¤
is a non-smooth function of v and many points are required in the

numerical integration. The above approach is then more accurate and faster.
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spread of the index at the time of computation13. As for iTraxx tranches, the maturity is 20 June 2010
(iTraxx series 3). We also plot compound correlations (columns four and five). The compound correlation

is the parameter to be put in the Gaussian copula model in order to price correctly the corresponding
tranche14. The premium of the [22-100%] tranche is implied from the rest of the capital structure and level
of the index15. We can see that the fit is rather good with close agreement on all tranches. Indeed it is
possible to add name specific parameters and fit perfectly although our own view is that this is of limited
value16.

Tranche
Market
premium

Model
premium

Market

compound
correlation

Model

compound
correlation

Index 36

[0-3%] 24% 25% 16% 14%

[3-6%] 83 84 4% 4%

[6-9%] 27 27 12% 12%

[9-12%] 14 14 17% 17%

[12-22%] 9 9 28% 28%

[22-100%] 4 2 63% 56%

Table 2. Fit of model characterised by equation (1.5) to iTraxx market data on 31-August-2005. All values
in bp pa unless otherwise stated. As usual the equity tranche is quoted as an up-front premium, in addition
to the contractual 500 bp pa. qs = 0.13, q = 0.84, ρ2 = 73.5%.

Tranche
Market
premium

Model
premium

Market
compound
correlation

Model
compound
correlation

Index 50

[0-3%] 40% 38% 10% 13%

[3-7%] 126 139 2% 2%

[7-10%] 36 39 12% 13%

[10-15%] 20 17 20% 19%

[15-30%] 10 10 34% 34%

[30-100%] 2 3 59% 65%

13Detailed data about individual credit spreads and default free rates is available upon request to the
authors
14As for the marginal compound correlation, this parameter may not be unique. Unlike base correlation,

it only depends on the price of a given tranche.
15Unless the default-free interest rates are equal to zero, we cannot compute the premium of the super

senior tranche in a model-free framework.
16Unless of course this coincides with our view regarding the idiosyncratic risk of each name.
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Table 3. Fit of model characterised by equation (1.5) to CDX market data on 31-August-2005. All values
in bp pa unless otherwise stated. As usual the equity tranche is quoted as an up-front premium, in addition

to the contractual 500 bp pa. qs = 0.15, q = 0.84, ρ2 = 85.3%.

We now show a fit for the 10-Jun-2005 closer to the crisis earlier in the year. While the market was still in a
rather dislocated state at this point, we still have a good fit of the model to the market. Let us remark that
the fitting parameters are related to the premiums of the junior super senior and super senior tranches (i.e.
[12-22%] and [22-100%]). As discussed by Gregory et al. [2005], these two tranches should be closely related.
However, their values have not always behaved in this way, perhaps not surprisingly as the [22-100%] is only
valued implicitly. We can improve the fit by adjusting the recovery values (since the relative values of these
tranches are very sensitive to recovery). However, we believe that this is rather needless and is unrelated to
any risk management of recovery risk.

Tranche
Market
premium

Model
premium

Market
compound
correlation

Model
compound
correlation

Index 41

[0-3%] 29% 29% 15% 17%

[3-6%] 109 113 2% 2%

[6-9%] 34 35 10% 10%

[9-12%] 23 21 18% 17%

[12-22%] 15 15 29% 30%

[22-100%] 4 4 62% 61%

Table 4. Fit of model characterised by equation (1.5) to iTraxx market data on 10-June-2005. qs = 0.195,
q = 0.87, ρ2 = 76.5%.

In the case of CDX, the best fit on 10-June-2005 is obtained with ρ2 = 99%. ρ̃i can then only take values 0
and 1. We can check that when ρ2 = 1, the distribution of conditional default probabilities is discrete with
probability masses at 0, qF (t), 1− q + qF (t) and 1.

Tranche
Market

premium

Model

premium

Market
compound
correlation

Model
compound
correlation

Index 57

[0-3%] 45% 44% 11% 13%

[3-7%] 160 191 0% 1%

[7-10%] 41 42 9% 10%

[10-15%] 22 20 17% 16%

[15-30%] 14 14 34% 35%

[30-100%] 5 4 72% 67%

Table 5. Fit of model characterised by equation (1.5) to CDX market data on 10-June-2005. qs = 0.189,
q = 0.89, ρ2 = 99%.



2 MARKET FITS 10

Tranche
Market
premium

Model
premium

Market
compound
correlation

Model
compound
correlation

Index 54

[0-3%] 47% 41% 9% 16%

[3-6%] 150 211 0% 0%

[6-9%] 48 41 7% 6%

[9-12%] 33 35 14% 15%

[12-22%] 24 25 28% 29%

[22-100%] 5 6 56% 62%

Table 6. Fit of model characterised by equation (1.5) to iTraxx market data on 16-May-2005. qs = 0.246,
q = 1.

Tranche
Market
premium

Model
premium

Market
compound
correlation

Model
compound
correlation

Index 76

[0-3%] 62% 56% 6% 13%

[3-7%] 256 390 0% 0%

[7-10%] 56 59 6% 6%

[10-15%] 31 29 14% 14%

[15-30%] 19 20 32% 33%

[30-100%] 2 5 51% 66%

Table 7. Fit of model characterised by equation (1.5) to CDX market data on 16-May-2005. qs = 0.205,
q = 0.90, ρ2 = 99%.

As for the 16-May-2005, the best fit for iTraxx data is obtained with q = 1 (thus, the value of ρ2 is irrelevant).
In this case, ρ̃i can then only take values 0 and 1 and the distribution of conditional default probabilities
is discrete with masses at 0, F (t) and 1. It can be seen that the fit is rather poor for the equity and
junior mezzanine tranches, while the most senior tranches are well priced. We also notice that during this
troubled period, there was some difficulty in finding compound correlations for the [3-6%] iTraxx and [3-7%]
CDX tranches. In this case, we reported a 0% compound correlation. This is consistent with the previous
discussion about the existence of the marginal compound correlation.

2.2 Dynamics of implied parameters
An obvious question to be considered in a model is not only the ability to fit the market but also the stability
of parameters over time. We show in Figure 1 the time series of the calibrated idiosyncratic risk, q, systemic
risk, qs and correlation, ρ2 from the 15th of April 2005 to the 6th of September 2005. We also plotted the 5
year iTraxx index (series 3) over the same period. We clearly see the effect of the market dislocation of May
returning, which is illustrated by a decrease in both idiosyncratic (q) and systemic risk (qs). Clearly over
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this rather volatile period, the parameters are not so stable. However, by looking at the more recent history
we can be a little reassured that this is not so unreasonable. For example, the iTraxx index level was rather

stable in the range 35 to 38 bps from mid-July to end of August 2005 and yet the market tranche premiums
(and consequently model parameters) moved significantly in this period. It seems unreasonable to suggest
that any model would capture this behaviour with stable parameters.

Figure 1. Time series of 5Y iTraxx series 3 calibrated systemic (qs), idiosyncratic (q) and correlation (ρ2)
parameters. Systemic probability (qs) on right axis.
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Figure 2. Time series of 5Y iTraxx series 4 calibrated systemic (qs), idiosyncratic (q) and correlation (ρ2)
parameters. Systemic probability (qs) on right axis.

Figure 3. Time series of 5Y iTraxx series 5 calibrated systemic (qs), idiosyncratic (q) and correlation (ρ2)
parameters. Systemic probability (qs) on right axis.
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Figures 2 and 3 represent the same calibrated parameters, idiosyncratic risk, q, systemic risk, qs and cor-
relation, ρ2 from the 19th of September 2005 to the 16th of March 2006 (Figure 2) and from the 17th of

March 2006 to the 15th of September 2006 (Figure 3). This is associated respectively with the 5 year iTraxx
index series 4 and the 5 year iTraxx index series 5 that are also plotted on the graphs. It can be seen that
the systemic probability qs kept going down until recently. This shows the impact of leverage super senior
issuance. Idiosyncratic probability (q) and correlation parameter (ρ2) moved in intermediate ranges with a
peak in March 2006.

We also computed the correlations between the calibrated parameters and the relevant iTraxx index. This is
reported in Table 8. We can notice that there is a high degree of positive dependence between the correlation
parameter ρ2 and the idiosyncratic probability parameter q. The index level and the systemic probability
parameter qs were also highly correlated (iTraxx series 3 and 4) though we could see a decrease over the
more recent period (iTraxx series 5). Other pairwise correlations may look large for some sub-periods, but

without any stability through time. The previous statistical analysis may be helpful for risk management
purpose and capital reserve policy. It also gives some insights about the specification of a fully dynamic
credit risk model.

S3 S4 S5

ρ(F (t), ρ2) 2% -38% -13%

ρ(F (t), q) 10% -41% -10%

ρ(F (t), qs) 87% 72% 23%

ρ(q, ρ2) 94% 91% 86%

ρ(q, qs) 30% -43% 34%

ρ(ρ2, qs) 23% -43% -1%

Table 8. Dynamics of calibrated parameters. iTraxx series.

2.3 Credit deltas
Figure 4 plots the credit deltas for the different tranches in the iTraxx market on 31-August-2005. The
credit delta of a given tranche with respect to one name is computed the following way: we shift the 5 year
credit spread of that name, compute the change in present value for the corresponding CDS, say ∆PVi and
the change in present value for the CDO tranche, say ∆PVCDO. The nominal is equal to n = 125. The

credit delta for the CDO tranche is then computed as ∆PVCDO

∆PVi
. This provides the amount of CDS to be held

in order to hedge the present value of the CDO tranche against small changes in credit spreads, provided
that the parameters ρ2, qs, q remain unchanged.

Not surprisingly the deltas are larger for the equity tranche since other tranches are call spreads. Also credit
deltas of the [3-6%] tranche are larger than those of the [6-9%] and so on which is not surprising either
since the latter tranche is more out of the money than the former. We can notice that the credit deltas of
the equity tranche increase with the level of name spreads: once again, this can be easily understood since
higher spread names are likely to default first and contribute more to the present value of the equity tranche.
Conversely, the credit deltas of the less junior tranches tend to decrease with the level of the credit spreads.
We can notice rather large bumps in the shape of the credit deltas. This can be explained as a consequence
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of the comonotonic state in a heterogeneous credit spread framework. It can be easily checked that the
credit deltas are a weighted average of the deltas within two simpler stochastic correlation models, that

is (1 − qs)δρ̃i=(1−Bi)ρ + qsδρ̃i=1; δρ̃i=(1−Bi)ρ corresponds to the vector of credit deltas when the stochastic
correlations are equal to ρ̃i = (1−Bi)ρ, i = 1, . . . , n (which is a two states stochastic correlation model) and
δρ̃i=1 corresponds to the vector of credit deltas with comonotonic default dates. In a comonotonic model,
defaults dates are perfectly ordered, the name with the highest spread defaulting first, the second default
being associated with the second highest spread and so on. As a consequence, a first to default swap is
associated with a delta equal to 100% for the name with the highest spread and a zero delta for the other
names. A second to default swap is associated with a delta equal to 100% with respect to the second highest
credit spread name and a zero delta for the other names. Considering that a CDO tranche with a nominal
equal to the number of names is similar to the sum of k-th to default swaps, in a comonotonic model,
the corresponding credit deltas are equal to 100% within a given range of credit spreads and equal to zero

elsewhere. Having in mind that the systemic probability was equal to 13% on 31-August-2005, this leads to
a discontinuity in the credit deltas of the same magnitude as can be seen in Figure 4. Though the irregular
shape of the credit deltas can be well-explained, this is clearly an unpleasant feature of the model as far as
risk management is concerned. Let us remark that this irregularity would vanish if all credit spreads were
equal (homogeneous portfolio). With this in mind, we can slightly adapt the stochastic correlation model for
it to behave homogeneously in the comonotonic state17 . This small adjustment to the stochastic correlation
model is associated with smooth deltas and does not lead to extra computational difficulty.

17Default dates are then defined as τ i = (1−Bs)H−1i (Φ(Vi)) +BsF
−1(Φ(V )) where Hi(t) =

Fi(t)−qsF (t)
1−qs ,

i = 1, . . . , n, F (t) = 1
n

Pn
i=1 Fi(t) and Vi = (1−Bi)ρV +

p
1− (1−Bi)ρ2V̄i, i = 1, . . . , n. It can be checked

that this leads to a proper model provided that qs is not too large.
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Figure 4. CDO tranche deltas with respect to the level of credit spreads computed on 31-August-2005.
Nominal is equal to 125. 5 year credit spreads on the x axis are expressed in bp pa. Credit deltas of the

equity tranche on right axis.

3 Large homogeneous portfolio approximations
Starting from Vasicek [1987], it has been shown that loss distributions could be greatly simplified in the
case of large homogeneous portfolios and a factor framework. Under the homogeneity assumption, i.e.
F1(t) = . . . = Fn(t) = F (t), δ1 = . . . = δn = δ18 and provided that the number of names n is large, the
aggregate loss L(t) = (1−δ)× 1

n

Pn
i=1 1τi≤t has the same distribution as (1−δ)p

.|V,Bs
t

19. As a consequence,
up to a scaling factor, the distribution of the losses within a large homogeneous portfolio and the distribution
of the conditional default probability are the same.

3.1 Large homogeneous portfolio distributions
Within the stochastic correlation model, the distribution function of conditional default probabilities G is
given by20: p ∈ [0, 1]→ G(p) = Q(p

.|V,Bs
t ≤ p) and:

G(p) = (1− qs)
µ
1qF (t)<p<1−q+qF (t)Φ

µ
1

ρ

µp
1− ρ2Φ−1

µ
p− qF (t)
1− q

¶
−Kt

¶¶
+ 1p≥1−q+qF (t)

¶
+ qsΦ(−Kt),

(3.7)

for 0 ≤ p < 1, where qs = Q(Bs = 1) and q = Q(Bi = 1), Kt = Φ
−1 (F (t)). Let us emphasize that in the

homogeneous case, we can compute the pgf of the aggregate loss only through the distribution function of
conditional default probabilities G. Indeed, we have: ψL(u) =

R 1
0

¡
pu1−δ + 1− p

¢n
dG(p).

We have Q
³
p
.|V,Bs

t = 0
´
= qsΦ(−Kt) = qs(1 − F (t)) and Q

³
p
.|V,Bs
t = 1

´
= qsΦ(Kt) = qsF (t). Since

qs = Q
³
p
.|V,Bs
t ∈ {0, 1}

´
, increasing qs leads to increase the weights associated with extreme probabilities

and decrease the probabilities of intermediate probabilities21 . Thus, increasing qs should result in increasing
the premiums of equity and senior tranches and decreasing the premiums of mezzanine tranches, leading to
a more pronounced correlation smile.

The distribution function is constant between 0 and qF (t) and between 1 − q + qF (t) and 122. The inner
interval ]qF (t), 1−q+qF (t)[ is associated with a smooth distribution function. This interval always contains
the marginal default probability F (t). As q decreases from 1 to 0, the inner interval increases from ]F (t), F (t)[

to ]0, 1[. Decreasing the idiosyncratic probability q extends the support of the continuous part of the
distribution. This should decrease premiums of intermediate mezzanine tranches and increase premiums of

18As above, the recovery rates are assumed to be deterministic.
19For notational simplicity, we will further remove the name dependence in the superscripts.
20The proof is detailed in appendix A.
21When qs = 1, Q

³
p
.|V,Bs
t = 0

´
= 1 − F (t) and Q

³
p
.|V,Bs

t = 1
´
= F (t) which corresponds to the

comonotonic case.
22The probability of these two intervals is equal to zero.
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junior mezzanine and senior tranches. When q < 1 and 0 < ρ2 < 1, there are no probability masses at qF (t)
and 1− q+ qF (t). If ρ2 < 50%, G has a right derivative at qF (t) and a left derivative at 1− q+ qF (t) equal
to zero. In this case, the distribution function G is differentiable at qF (t) and at 1− q+ qF (t). If ρ2 > 50%,
then the right derivative at qF (t) and the left derivative at 1− q+ qF (t) are infinite. Even when ρ2 < 50%,
there might be a sharp increase of G after qF (t). When q = 1, there is a probability mass of 1− qs at F (t)
(associated with the independence case).

3.2 Zero-coupon CDO tranche premiums
We can provide a closed form expression of the premium of a zero-coupon CDO in the large homogeneous
portfolio approximation. Indeed, for an option on the aggregate loss, with maturity t, exercise price k we
can express the up-front premium as :

qs(1− k)F (t) + (1− qs)(1− q)
¡
Φ2,ρ(Φ

−1(F (t)), V ∗)− k∗Φ(V ∗)
¢

(3.8)

for qF (t) < k < 1− q + qF (t) where:

k∗ =
k − qF (t)
1− q , V ∗ =

1

ρ

³
Φ−1(F (t))−

p
1− ρ2Φ−1(k∗)

´
, (3.9)

and Φ2,ρ is the bivariate Gaussian distribution function with correlation parameter ρ. The proof is postponed
to Appendix B.

We can also derive the (lower) quantile function G−1. For 0 ≤ u ≤ qs(1 − F (t)), then G−1(u) = 0. For
1− qsF (t) ≤ u ≤ 1, G−1(u) = 1. For qs(1− F (t)) < u < 1− qsF (t),

G−1(u) = (1− q)Φ
Ã

1p
1− ρ2

µ
ρΦ−1

µ
u− qsΦ(−Kt)

1− qs

¶
+Kt

¶!
+ qF (t),

with Kt = Φ
−1(F (t)). This result can be used for the computation of risk measures which, as the Expected

Shortfall, involve weighted averages of quantiles of the loss distribution. Let us notice that combining the
previous results, we can derive the Expected Shortfall of the aggregate loss in closed-form when using the
large homogeneous portfolio approximation.

3.3 Marginal compound correlation
Since the market does not price with the Gaussian copula, it has become a standard practice to extract
compound or base correlations from market prices23 . Turc et al. [2005] have recently introduced the concept

of marginal compound correlation as a limit case of the usual compound correlation of CDO tranches. In
this subsection, we firstly review the main features of marginal compound correlation. We then show that
the marginal compound correlation can be computed analytically within the stochastic correlation model.

Let us consider a mezzanine tranche with attachment-detachment points of α and α + η. Neglecting dis-
counting effects, the upfront premium is given by 1

η

R α+η
α

(1−GL(u)) du where GL denotes the aggregate

23Thanks to the theory of stochastic orders, it can be proved that increasing ρ leads to a decrease in

the upfront premium of an equity tranche (see Burtschell et al. [2005]). Thus, base correlation is unique
whenever it exists, which may not be the case.
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loss distribution function. For "small" η, the payoff corresponds to a digital option on the aggregate loss
at the maturity of the tranche, with strike α, while the upfront premium is equal to 1 − GL(α)24 . On
the other hand, for a large homogeneous portfolio, the distribution function of the aggregate losses can be
approximated by the distribution function of the conditional default probability G (see previous subsection).
The up-front premium of the above mezzanine tranche can then be approximated by 1−G

³
α
1−δ

´
.

The upfront premium of such a [α,α]mezzanine tranche of a large homogeneous portfolio computed under the
one factor Gaussian copula assumption with correlation parameter ρ and neglecting the discounting effects

is given by: 1 − Φ
µ√

1−ρ2Φ−1( α
1−δ )−Φ

−1(F (t))

|ρ|

¶
25. The marginal compound correlation for that mezzanine

tranche is denoted by ρ̄(α) ∈ [0, 1]26 and is such that:

G

µ
α

1− δ

¶
= Φ

⎛⎝p1− ρ̄(α)2Φ−1
³

α
1−δ

´
−Φ−1(F (t))

ρ̄(α)

⎞⎠ . (3.10)

ρ̄(α) is the correlation parameter to be put in the Gaussian copula model in order to price correctly the
previous [α,α] mezzanine tranche.

In Appendix C, we show that for any given α ∈ [0, 1], ρ̄(α) can be analytically computed from equation (3.10).
We need to solve for a second order equation. Thus, there are at most two marginal compound correlations
ρ̄(α)27. There may be zero or two marginal compound correlations. The non uniqueness is not really a
mathematical problem, since we can arbitrarily choose one of the two solutions, which leads by construction
to the same value of G(α). As seen from above, only G(α) is involved in loss distributions and price

computations.

4 Stochastic and state dependent correlation
In order to give a broader perspective on the three states stochastic correlation model, we compare it with
another popular extension of the one factor Gaussian copula, namely the random factor loading model
(Andersen & Sidenius [2005a]). For the paper to be self-contained, we firstly review the main properties of
the model. We direct the reader to Andersen & Sidenius [2005a] for further details. We then compare large
homogeneous portfolio distributions and marginal compound correlation curves. Eventually, we compute
the local correlation curves associated with the two models.

24Thanks to the right-continuity of GL.
25In the case of the Gaussian copula, we can easily derive G as:

p ∈ [0, 1]→ G(p) = Q
³
p
i|V
t ≤ p

´
= Φ

Ãp
1− ρ2Φ−1(p)−Φ−1(F (t))

| ρ |

!
.
26Since only | ρ | is involved in the upfront premium of the mezzanine tranche, we can restrict to correlation

parameters within 0 and 1. Let us also remark that α → Φ
µ√

1−ρ2Φ−1(α)−Φ−1(F (t))
ρ

¶
is not a distribution

function for negative ρ’s.
27Since these are solution of the second order equation (5.1).
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4.1 Random factor loadings
We can think of the following extension of the Gaussian copula, belonging to the class of one factor mean
variance Gaussian mixtures, where the latent variables are modelled by:

Vi = mi(V ) + σi(V )V̄i, i = 1, . . . , n. (4.1)

V, V̄i are independent standard Gaussian random variables. In this approach, default times are conditionally
independent upon V which makes the semi-analytical approach still available (see Laurent & Gregory [2005]).

For simplicity, we consider from now-on that the credit spreads are equal, i.e. F1 = . . . = Fn = F . In the
random factor loading model introduced by Andersen & Sidenius [2005a], σi(V ) is constant, while in the
local correlation model of Turc et al [2005], σi(V ) =

p
1−mi(V )2.

The simplest form of random factor loadings is associated with the following parametric modelling of latent
variables:

Vi = m+ (l1V <e + h1V≥e)V + νV̄i, i = 1, . . . , n (4.2)

where V, V̄1, . . . , V̄n are independent standard Gaussian random variables, l, h, e some input parameters,
l, h > 0. This can be seen a random factor loading model, since the risk exposure l1V <e + h1V≥e is state
dependent. m and ν are such that E [Vi] = 0 and E

£
V 2i
¤
= 1. This leads to m = (l − h)ϕ(e) and:

ν =
¡
1 +m2 − l2 (Φ(e)− eϕ(e))− h2 (eϕ(e) + 1−Φ(e))

¢1/2
,

where Φ is the Gaussian cumulative density function, ϕ the Gaussian density function. The marginal
distribution of Vi, that we denote by HRFL, involves a bivariate Gaussian cumulative density function:

HRFL(x) = Q(Vi ≤ x) = Φ2
µ
x−m√
ν2 + l2

, e,
l√

ν2 + l2

¶
+Φ

µ
x−m√
ν2 + h2

¶
−Φ2

µ
x−m√
ν2 + h2

, e,
h√

ν2 + h2

¶
,

where Φ2(., ., ρ) is the bivariate Gaussian cumulative density function with correlation parameter ρ. The

default times are then defined by τ i = F−1 (HRFL(Vi)), i = 1, . . . , n, where F denotes the marginal
distribution of the default times. The conditional default probabilities can be written as:

p
i|V
t = Q(τ i ≤ t | V ) = Φ

µ
1

ν

¡
H−1RFL(F (t))−m− (l1V≤e + h1V >e)V

¢¶
. (4.3)

The distribution function of the conditional default probabilities is given through:

G(p) = Q(p
i|V
t ≤ p) = Φ

µ
min

µ
z(p)

h
,−e

¶¶
+

µ
Φ

µ
z(p)

l

¶
−Φ(−e)

¶
1z(p)>−el, (4.4)

for 0 < p < 1, where z(p) = νΦ−1(p)−H−1RFL(F (t)) +m28.

28Let us assume that e < 0 and h < l. We can then write G−1 as:

G−1(u) = Φ

µ
1

ν
×
¡¡
1u≤Φ(−e)h+ 1u>Φ(−e)l

¢
Φ−1(u) +H−1RFL(F (t))−m

¢¶
.

As for the stochastic correlation model, this result is useful for the computation of risk measures.
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4.2 Comparison of large homogeneous portfolio distributions
For further comparisons, we plot the distribution functions of the conditional default probabilities associated
with the stochastic correlation and the random factor loading models (Figure 5). We recall that these also
correspond to the distribution functions of large homogeneous portfolios. As for the stochastic correlation
model, the parameters are respectively qs = 0.14, q = 0.81, ρ2 = 58%. The default probability F (t) = 2.96%
is such that Φ−1(F (t)) = −1.886. As for the random factor loading model, we took l = 85%, h = 5%

and e = −2 (see Andersen and Sidenius [2005a]) and H−1RFL(F (t)) = −1.886. The graph also shows the
distribution function associated with the independence case.

Figure 5. Distribution functions of conditional default probabilities.

Using the previous data usually provides reasonable fit to quoted CDO tranches. Let us remark that the
stochastic correlation and random factor loading models are associated with overall rather similar patterns.
However, there is a big discrepancy for the small probability region. The weights put on small probabilities,
and thus on first losses are strikingly different. Though the equity tranches may be priced accordingly in
the two models, it is likely that a first to default swap or a [0,1%] equity tranche would be priced quite
differently.

4.3 Marginal compound correlation curves
We now show the marginal compound correlation curves associated with the three parameters stochastic
correlation and random factor loading models, with the same set of parameters as above (Figure 6). The
recovery rate is equal to 40%.

The marginal compound correlations exhibit a smile feature, with a rather strong peak in the middle. Let
us recall that after p = qF (t), there is a sharp increase of the distribution function associated with the
stochastic correlation model, leading to that sharp increase in the marginal compound correlation after
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p = (1 − δ)qF (t). That shape is not inconsistent with what was observed in the market with compound
correlations on 10 years iTraxx tranches. We notice that we have a zero marginal compound correlation

for p = (1 − δ)F (t). Both models exhibit this feature. For attachment - detachment points above that
threshold, there are two marginal compound correlations. We chose the smallest one consistently with
market practice, which explains the discontinuity in the marginal compound correlations. Of course, both
marginal compound correlations lead to the same value of G, which is the meaningful input.

Let us remark some difference in the region of first losses where the marginal compound correlation is much
larger for the stochastic correlation model. This is consistent with the analysis of distribution functions and
the probability mass at 0 in the case of the stochastic correlation model.

Figure 6. Marginal compound correlation (vertical axis) associated with stochastic correlation and random
factor loading models with respect to the level of attachment - detachment point (horizontal axis)

4.4 Local correlation curves associated with the two models
We show here that the concept of local correlation introduced by Turc et al. [2005] can be used for the

purpose of comparing stochastic correlation and random factor loading models. In Turc et al. [2005]
framework, the latent variables are given by:

Vi = −ρ(V )V +
p
1− ρ2(V )V̄i, i = 1, . . . , n (4.5)

where V, V̄1, . . . , V̄n are independent standard Gaussian random variables and ρ(.) is some function of V tak-
ing values in [0, 1], known as the local correlation. By conditioning upon V , we get the marginal distribution
of Vi:

H(x) = Q(Vi ≤ x) =
Z
R
Φ

Ã
x+ ρ(v)vp
1− ρ2(v)

!
ϕ(v)dv (4.6)
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for x ∈ R, where Φ is the Gaussian cumulative density function, ϕ the Gaussian density function. The
conditional default probabilities can be written as:

p
i|V
t = Q(τ i ≤ t | V ) = Φ

Ã
H−1(F (t)) + ρ(V )Vp

1− ρ2(V )

!
. (4.7)

The local correlation can be used in a way which parallels the local volatility modelling in the equity
derivatives market: this consists in a non parametric calibration of ρ(.) on CDO tranche premiums computed
under the three states stochastic correlation model (respectively the random factor loading model). Let us
denote by G the distribution function of the conditional default probabilities in the three states stochastic
correlation model (respectively the random factor loading model). To achieve the non parametric calibration,

we must look for ρ(.) such that the distribution function of pi|Vt in equation (4.7) is equal to G. Since
only conditional default probability distributions are involved in the computation of CDO tranches, this
procedure guarantees a perfect calibration to CDO tranche premiums computed under the three states
stochastic correlation model (respectively the random factor loading model).

The previous procedure leads to the following equation involving ρ(.):

H−1(F (t)) + ρ(v)vp
1− ρ2(v)

= Φ−1
¡
G−1 (Φ(v))

¢
, ∀v ∈ R, (4.8)

with: H(x) =
R
RΦ

µ
x+ρ(v)v√
1−ρ2(v)

¶
ϕ(v)dv29 . It can be shown that the local correlation can be viewed as a

rescaled marginal compound correlation. Technical details about the previous inverse problem can be found
in the paper by Turc et al [2005] and are provided with further discussion in Appendix D.

Figure 7 plots the local correlation curve associated with the stochastic correlation model. For small and
large values of V , the local correlation is equal to 1, corresponding to the existence of a comonotonic state.
We have two local correlations for values of V approximately between 1 and 2, leading to the same CDO
prices.

29Let us remark that the right-hand term is given while the left-hand term involves ρ either directly or
indirectly through H.
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Figure 7. Local correlation (vertical axis) associated with the stochastic correlation model with respect to
the level of the latent factor V (horizontal axis)

Figure 8 plots the local correlation curve associated with the random factor loading model. We notice that
for low levels of the factor V , ρ(V ) is close to 5%, while for high levels of V , ρ(V ) is close to 85% consistently
with the inputs, as is the case for the discontinuity at V = 2. As in the previous case, when V is in between

1 and 2, there are two local correlations.

Figure 8. Local correlation (vertical axis) associated with the random factor loading model with respect to
the level of the latent factor V (horizontal axis)

Conclusion
In this article, we have shown how to adapt the one factor Gaussian copula and analysed some copula skew
approaches to matching the market prices of synthetic CDO tranches.

We show that a simple class of stochastic correlation models can provide a reasonable good fit to the market

at a single maturity. These are quite easy to implement, since the marginal distributions of latent variables
remain Gaussian, and the parameters have intuitive interpretation. Stochastic orders theory is helpful for
risk management purposes. We provided some dynamics of the calibrated parameters, which is a first step
in the risk management process. The cornerstone of the pricing remains the factor copula approach, which
is associated with semi-analytical pricing techniques and easy to use large portfolio approximations. This
we believe is an alternative (or complementary) to the market standard base correlation approach.

It can be seen that distribution functions of conditional default probabilities are unambiguous modelling
inputs, while local correlation suffers from existence and non uniqueness issues. Thus, a local correlation
approach offers some intuition but is ultimately not an obvious way to parametrize a model.

Stochastic and local correlation approaches suffer from global consistency, related to calibration to different

maturities, credit spread dynamics and hedging issues. Such issues may well need to be addressed outside a
copula framework. Before this however, the copula skew approach is a valuable next step in understanding
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the pricing and risk management issues of bespoke credit portfolios. Stochastic and local correlation might
thus either appear as transient and transitional since they do not sever the umbilical cord with the Gaussian

copula and lead towards a mature modelling framework. But they do, we believe, give a useful way in which
to analyse the problems of the correlation skew, move away from base correlation approaches and take the
next step forward in correlation modelling.
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Appendix A: distribution of conditional default proba-

bilities within the stochastic correlation model
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that q < 1, ρ > 0. Then, (1− q)Φ
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This leads to the stated expression.

Appendix B: computation of zero-coupon CDO premi-

ums
We detail here the computation of zero-coupon CDO premiums using the large homogeneous portfolio

approximation. We need to compute
R
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with k∗ = k−qF (t)
1−q . We will further focus on the case where 0 < k∗ < 1 or equivalently where qF (t) < k <

1− q + qF (t), the other cases leading to straightforward computations. Φ
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Appendix C: computation of the marginal compound

correlation
Let us consider the inverse problem of finding a marginal compound correlation from the distribution of
conditional default probabilities G. To ease the discussion, we assume here that δ = 0. As an example of
the difficulties involved, let us assume that F (t) = 0.4 and G being associated with a discrete distribution

with probability mass of 0.5 at 0 and 0.5 at 0.830. For 0.5 < α < 0.8, G(α) = 0.5, thus G(α) < 1−F (t) and
there is then no solution to equation (3.10)31 . Unfortunately, marginal compound correlation may not exist
for consistent pricing models.

Equation (3.10) can equivalently be written as:

ρ̄(α)Φ−1 (G(α)) +Φ−1 (F (t)) =
p
1− ρ̄(α)2Φ−1(α).

We recall that for notational simplicity, δ = 0. By squaring up the previous equality, we obtain the following
second order equation, from which we must consider the positive roots:³

Φ−1 (G(α))2 +Φ−1(α)2
´
ρ̄2 + 2Φ−1 (G(α))Φ−1 (F (t)) ρ̄+Φ−1 (F (t))2 −Φ−1(α)2 = 0. (5.1)

Let us emphasize that any solution of:

ρ̄(α)Φ−1 (G(α)) +Φ−1 (F (t)) = −
p
1− ρ̄(α)2Φ−1(α), (5.2)

is also a solution of equation (5.1). The roots of equation (5.1) are the roots of equation (3.10) plus the
roots of equation (5.2). In the numerical examples below, we firstly write the roots of equation (5.1) and
then check that they indeed solve equation (3.10).

Let us discuss the existence of a solution to equation (5.1). We denote by:

∆0 = Φ−1(α)2 ×
³
Φ−1 (G(α))2 +Φ−1(α)2 − Φ−1 (F (t))2

´
.

Equation (5.1) has real roots if and only if ∆0 ≥ 0 but this may not be the case as illustrated by the following
example. We assume that pi|Vt is discretely distributed with probability 0.5 to be equal to 0 and 0.5 to be

30It can be checked that
R 1
0
pdG(p) = F (t) which means that the expected conditional default probability

is the marginal default probability.
31The right hand term of equation (3.10) decreases from 1 to 1− F (t) as ρ̄(α) increases from 0 to 1.
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equal to 0.5. This leads to a marginal default probability of 0.25. G is constant on ]0,0.5[ and equal to 0.5.
Then ∆0 < 0 for α ∈]0.25, 0.5[.

Let us now discuss whether equation (5.1) admits a unique solution. If Φ−1 (F (t))2 > Φ−1(α)2, and provided
that ∆0 > 0, there are two real roots of the same sign. We previously showed some practical cases where
they were actually two positive roots to equation (5.1) that appear to be also solutions of equation (3.10).

Appendix D: derivation of the local correlation function
We denote by:

ε(V ) =
H−1(F (t)) + ρ(V )Vp

1− ρ2(V )

and assume that ε is increasing with V . From equation (4.7), we have pi|Vt = Φ (ε(V )). Thus, for p in [0, 1],
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¶
ϕ(v)dv. The right-hand term is given while the left-hand term involves ρ

either directly or indirectly through H.

We proceed with a fixed point algorithm, constructing a series of functions ρn converging to a solution of
previous functional equation. We set ρ0(v) = ρ, where ρ is some arbitrary correlation parameter (ρ0 is then

a constant function). We then set H0 such that H0(x) =
R
RΦ

µ
x+ρv√
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¶
ϕ(v)dv, which leads obviously to

H0 = Φ. We then solve the following equation for all v’s:
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which provides ρ1
32 . H1 is such that H1(x) =
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and then set Hn such that Hn(x) =
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ϕ(v)dv. Whenever Hn = Hn−133 , the algorithm has

converged and we set ρ = ρn.

Equation (3.10) can be equivalently written as Φ
−1(F (t))+ρ̄(p)Φ−1(G(p))√

1−ρ̄(p)2
= Φ−1(p). By stating p = G−1(Φ(v)),

we obtain Φ
−1(F (t))+ρ̄(p)v√
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¡
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¢
. Comparing with equation (6.2), we get ρ̄(p) = ρ1(v), which

32The previous equation is quite similar to the one providing the marginal compound correlation. By
squaring up, we obtain a second order algebraic equation, which we solve as usual.
33We only need to check that H−1n (F (t)) = H−1n−1(F (t)).
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means that local correlation is directly related to the marginal compound correlation of some mezzanine
tranche with an appropriate strike. The previous equation also shows that local correlation shares the same

existence and uniqueness problems as marginal compound correlation.

Let us remark that ε is time dependent due to the terms F (t) and G; thus the calibration of ρ involves a
special maturity choice. There is clearly no guarantee that calibrating on two different time horizons would
lead to the same local correlation.

Figure 9. Check of convergence of the fixed point algorithm (stochastic correlation model)

Figure 9 plots the functionsH0 andH1 for the stochastic correlation model. It can be seen thatH
−1
0 (F (t)) =

H−11 (F (t)). This shows that the algorithm has converged only after one step and that actually, ρ1 = ρ and
H1 = H. We also checked that the function ε was increasing.


