

Motivation for using CVA

The uncertainty of CVA

Credit curve mapping

Challenging in hedging CVA

Motivation for CVA

- Risk management need
 - An institution should consider counterparty risk as with other financial risks
 - CVA should be priced into trades to avoid adverse selection (traders find it more profitable to trade with weaker counterparties)
 - Trading should be judged on profit **after** CVA has been accounted for
 - But banks find it hard to lose PnL / franchise value
- Financial accounting
 - Periodic CVA calculation to quantify fair value of derivatives for accounting purposes
 - But precise calculation not well-defined, different standards exist (e.g. IAS39, FASB157..)
- Regulation
 - Achievement of optimum regulatory capital relief through good management of CVA
 - No ambiguity around the Basel 3 requirements (but depends on implementation process)

Motivation for using CVA

The uncertainty of CVA

Credit curve mapping

Challenging in hedging CVA

CVA of a Swap

- Sorenson and Bollier, "Pricing swap risk", 1994
- CVA for a swap (maturity T) can be constructed as a weighted series of
 - European swaptions with maturity of potential default time τ on an underlying (reverse) swap of maturity T- τ

$$CVA_{swap} \approx (1 - \text{Rec}) \sum_{j=1}^{n} PD(t_{j-1}, t_j) V_{swaption}(t; t_j, T)$$
Default probability Today Swaption Swap maturity date

- Intuition
 - Short a series of swaptions with weights given by the forward default probabilities
 - Pricing the CVA of a swap has the complexity (at least) of pricing a swaption

Quantifying CVA is Very Complex

- CVA represents an option on an underlying derivative
 - Option is exotic even for a simple product like an interest rate swap
- Risk mitigants (netting, CSAs, break clauses)
 - Need to price all other trades with this counterparty as well as trade in question
 - All correlations (same asset class, cross-asset class must be known)
 - Now we are pricing a multidimensional exotic option
- Need the default probability (and recovery rate) of the counterparty
 - Often market implied probabilities not obvious (no CDS market)
 - Must look to bond spreads or some mapping procedure
 - Should we use DVA or not?
- Wrong way risk
 - Linkage between default probability and exposure at default

Motivation for using CVA The uncertainty of CVA

Credit curve mapping

Challenging in hedging CVA The impact of Basel III rules

CVA Risk Capital Charge (Basel III)

CVA definition is based on spreads NOT default probabilities

- What if we can't find the spread of a counterparty?
 - "Whenever the CDS spread of the counterparty is available, this must be used.
 Whenever such a CDS spread is not available, the bank must use a proxy spread that is appropriate based on the rating, industry and region of the counterparty."

Mapping Credit Spreads - Example

• Based on 5-year maturity CDS and index curve shape

Motivation for using CVA The uncertainty of CVA Credit curve mapping

Challenging in hedging CVA

CVA Greeks

- Market risk components
 - Linear sensitivities (e.g. interest rate risk, FX risk) reasonably easy to hedge
 - Vega much more difficult long dated / out of the money problems
 - Correlation generally unhedgeable so marked to historic
- Credit
 - Credit spread delta
 - Jump to default risk
 - Basic risk (single name hedges not available)
- For example for a single interest rate swap, theoretical hedge involves
 - CDS (to hedge credit spread and jump to default risk)
 - Interest-rate futures / FRAs (to hedge sensitivity of exposure to interest rates)
 - Interest rate swaptions (to hedge interest rate volatility)

Credit Hedges

- Impact of DVA on CDS hedges
 - Buy slightly less protection on counterparty (due to possibility of self defaulting first)
 - Sell protection on oneself

Basis Hedging and DVA

- \$100m, Payer IRS, 5-year maturity
 - Counterparty spread = 500 bps, own spread = 250 bps

CVA	77,566	Total	47,215
DVA	-30,351		

- Spreads widen
 - Counterparty spread = 600 bps, own spread = 350 bps

CVA	86,292	Total	46,900
DVA	-39,392		

- Spreads widen proportionally
 - Counterparty spread = 600 bps, own spread = 300 bps

Hedging With Indices (with DVA)

- Trading your own credit via the index?
 - But since the hedge is aggregated it doesn't look as bad!
 - Works well as long as the betas are correct (or are consistently wrong)
 - Net index hedge can be short protection (DVA dominates CVA)

Unintended Consequences of CVA

"... given the relative illiquidity of sovereign CDS markets a sharp increase in demand from active investors can bid up the cost of sovereign CDS protection. CVA desks have come to account for a large proportion of trading in the sovereign CDS market and so their hedging activity has reportedly been a factor pushing prices away from levels solely reflecting the underlying probability of sovereign default."

Bank of England Q2

- CVA desks with similar hedging requirements
 - Extreme moves in a single variable (e.g. spread blowout)
 - Sudden change in co-dependency between variables (creating cross gamma issues)
 - At this point do we stop hedging bear the pain?

Motivation for using CVA The uncertainty of CVA Credit curve mapping

Challenging in hedging CVA

Regulatory Reaction to Crisis(Basel 2.5 & 3)

- Stressed EPE
 - IMM Banks must calculate exposures using stressed market data
- Wrong way risk
 - Must identify "general" WWR and assume a higher exposure for "specific" WWR
- Systemic risk
 - Correlation multiplier (1.25) for large regulated / unregulated financial firm exposure
- Collateral.
 - A "margin period of risk" of 20 days must be applied for certain transactions
- Central counterparties
 - Risk weighting of 2% for CCPs which meet various rigorous conditions
- CVA VAR
 - Banks must hold additional capital to capture the volatility of CVA

What's in a Credit Spread?

- Decomposition of a typical CDS spread
 - Hull et al. [2005], Elton et al. [2001], Driessen [2005]
 - Expected default loss is small especially for high good credits

What Can We Do With CVA?

- Basel III forces banks to price / manage CVA actively what can we do?
- Trade out of CVA?
 - Hedging possible but limited single name CDS market makes this difficult
 - Securitize it might not be an easy idea to sell to the regulators
- Take more collateral?
 - Converts CVA into funding liquidity risk and residual unhedgeble "gap risk"
 - Limitations over counterparties who can sign CSAs (e.g. corporates, sovereigns)
- Trade through central counterparties?
 - More funding requirements than CSAs more funding liquidity risk
 - Creates more SIFIs

Conclusion

- Beware of attempts to hide CVA
 - Over collateralising positions (especially those with significant wrong way risk) creates significant other risks (funding liquidity risk, systemic risk)
 - These are almost impossible to quantify and control (helpful in the short term but potentially explosive in the longer term)
- Beware the mark-to-market approach towards CVA
 - Mapping of spreads is an art not a science
 - Capital relief achieved under Basel III via hedging with indices is linked to mapping becoming a self-fulfulling prophecy
 - DVA can be seen as a way to try and take us back to an actuarial style CVA
 - Hedging CVA is important but important to consider where is the CVA going?