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I. Introduction 
 
The credit derivatives market has developed massively during the last decade. A large 
part of this can be attributed to the popularity of the synthetic CDO (Collateralised 
Debt Obligation) which is a product that has dominated the structured credit 
landscape. The massive expansion of the market has necessitated a rapid development 
of simple and pragmatic modelling approaches, mainly the so-called Gaussian copula 
model and base correlation approach. These approaches are derived from the well-
known Merton idea of using asset correlation as a means to describe co-dependence 
between default events in a portfolio utilised in the KMVTM and CreditMetricsTM 
frameworks for credit risk management. The fact that the Gaussian copula approach 
to credit derivatives pricing has well-known roots, is simple to understand and easy to 
implement via analytically tractable methods, explains its popularity. 
 
Whilst there has been much criticism aimed at the copula and base correlation 
approaches for pricing CDO tranches and many alternative and more advanced 
approaches have been proposed, the process of such advanced models being adopted 
for use has seemingly been slow. This can be put down to a number of points, for 
example that they are slower and do cannot typically fit the market precisely (and may 
also require deeper thinking on the risk management implications). Although one can 
expect more advanced approaches to be increasingly used in the coming years, it is 
likely that we will rely on the current market standard approaches in one way or 
another for some time to come. In this chapter, we will review such standard 
approaches at the current time and whilst highlighting their deficiencies also show 
how they can be reasonably useful techniques if used intelligently and with caution. 
Finally, we will show some ways in which these methods can be applied to more 
recently developed products such as long/short CDOs and tranches on leveraged loan 
portfolios. 
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II. Basic Credit Correlation Modelling 
 
i) The Gaussian Copula Model 
 
So-called copula models that have dominated the structured credit market are based 
on the modelling of default times characterised by the following mapping for each 
name in the portfolio 
 

  iii VF  1 , 
 

where iV  represent some underlying (correlated) variables for which (.)  is the 
cumulative distribution function, (.)iF  is the cumulative default probability and i  is 
the default time.  
 
The most popular copula to use for iV  is the Gaussian one and furthermore this is 
normally used in a 1-factor setting. Although in principal there is some flexibility, this 
generally means that the underlying correlation matrix is flat3. In a 1-factor Gaussian 
model we can generate iV  by  
 

ii VVV ~1   , 
 

where V  and iV~  are uncorrelated Gaussian variables and   is the correlation. This 
characterises what has generally become known as the Gaussian Copula Model 
(GCM). The function (.)iF  can be implied from single name hedging instruments 
(typically CDS) for risk-neutral pricing. We can note that by instead deriving this 
default probability function from historical data we arrive at a similar approach to that 
taking by the rating agencies. 
 
The popularity of the GCM can be attributed to its inherent simplicity in creating a 
one-to-one mapping between price and correlation, similarly to the Black-Scholes 
model creating a link between option price and (implied) volatility. The synthetic 
CDO can be priced directly from a computation of the underlying loss distribution for 
the portfolio in question. This can be done via a number of approaches, such as the 
“large pool approximation” of Vasicek [2002], Fast Fourier transform as described by 
Gregory and Laurent [2003], recursion as in Andersen et al. [2003] or the algorithm of 
Hull and White [2004].  
 
The reader is referred to other chapters in this book for CDO pricing details which can 
also be found in Gregory and Laurent [2005]. For the purposes of this chapter we 
simply need to comment that the computation approaches rely on conditioning on the 
systemic variable. This leads to conditional default probabilities given by: -  
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3 By this we mean that all pairwise correlations are equal to the same value.  



So the impact of correlation in the GCM (or indeed any copula model) can be thought 
of as defining an uncertainty over realised default probabilities.  
 
 
ii) A Traded Correlation Market 
 
In this chapter we will use a number of examples to illustrate the pricing impact of 
various assumptions. All of these will be based on the market prices shown in Table 1 
which correspond to actual iTraxx Europe quotes. The index level denotes the price 
for the [0-100%] tranche and in reality, the single name CDS curves will normally be 
scaled to as to match this level4 (since there otherwise exists a basis). We also note 
that the [22-100%] tranche is normally not liquid and its value has been implied from 
the rest of the capital structure, a point we will return to later. 
  

Table 1. Market prices of 5-year iTraxx IG index tranches. Note that the [0-3%] 
equity tranche trades on an up-front basis with a 500 basis points per annum running 
premium. All other tranches are quoted in basis points per annum.  

 Market Price 
Index 35.0 
[0-3%] 25.75% 
[3-6%] 60.5 
[6-9%] 19.5 
[9-12%] 11.0 
[12-22%] 6.0 
[22-100%] 4.05 

 
This might be an appropriate point to comment on the link between default events and 
losses. For the N name portfolio with recovery rate denoted by  , each default will 
create a loss of N/)1(  . For the 125-name iTraxx portfolio assuming 30% 
recovery, this will be 0.56% meaning that 6 defaults will be required to wipe out the 
[0-3%] equity tranche. 
 
It is well-known that the standard GCM fails to fit the market prices of index tranches. 
As an example we show in Table 2 a simple example of a least squares fit to market 
prices. The deviation is huge, with the model dramatically underpricing equity and 
super senior risk and overpricing mezzanine tranches. 
 

                                                
4 This scaling involves ensuring that the index (which trades with a fixed premium) has a PV of zero 
and so is not given by a simple formula. 
5 This is a theoretical implied value as will be discussed later. 



Table 2. Example of fit of Gaussian Copula model to the market prices of 5-year 
iTraxx IG index tranches. The reference level of the index is 35 bps. The fit is 
achieved by using a least squares fit to the relative errors on the premiums on all 
tranches except the [22-100%].  

 Market Price Implied Correlation Model Price Correlation 
[0-3%] 25.75% 13.3% 20.39% 20.9% 
[3-6%] 60.5 1.5% 226.4 20.9% 
[6-9%] 19.5 8.8% 72.3 20.9% 
[9-12%] 11.0 14.2% 26.3 20.9% 
[12-22%] 6.0 20.4% 4.8 20.9% 
[22-100%] 4.0 49.5% 0.06 20.9% 

 
The inability of the Gaussian Copula model to fit the market can be attributed to the 
static nature of the model and the homogeneity of the dependence structure. On the 
latter point, we should note that with a moderate positive correlation, we can neither 
have idiosyncratic defaults (default of a name having no negative impact on the 
remainder of the portfolio) or significant systemic defaults (many defaults as a result 
of, for example, a global meltdown). These two points can to some extend explain the 
pricing discrepancies seen; more idiosyncratic risk would increase the value of the 
equity tranche while systemic risk would put more value in the senior part of the 
capital structure, in particular the default remote [22-100%] tranche. 
 
 
iii) Compound Correlation 
 
The fact that we observe a correlation skew is not a particular surprise. Skews and 
smiles are a common characteristic of many markets and just like pricing different 
options at different implied volatilities we could look to apply different correlations to 
each tranche. However, there is an additional problem here specific to CDOs. A 
mezzanine CDO tranche will have a non-monotonic behaviour with respect to 
correlation. This means that there may be two correlations that can match the market 
price. This is illustrated in Figure 1. The two correlations may be extremely different 
as shown in this example where they are very close to 0% and 100% but they could 
also be much closer together. 
 



Figure 1. Premium of [3-6%] tranche using the GCM as a function of correlation 
illustrating the two distinct correlation points that fit the market price. 
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The dual implied correlation phenomenon can be explained by the fact that there are 
two elements of risk to the tranche, specifically the probability it will be hit and the 
expected recovery. In the low correlation case, it is reasonably likely to take loses but 
the chance that the entire tranche is eroded is small. In the high correlation case, the 
tranche is much more likely to be wiped out completely but is also more likely to 
survive any loss. In terms of expected losses or price, these two outcomes can lead to 
the same value. This is illustrated in Figure 2 via the loss distribution at maturity (this 
illustrates the basic point although that we note that interest rates mean that the loss 
distribution at all other points in time has an impact on pricing. 
 



Figure 2. Illustration of the loss distribution at maturity under low and high 
correlations illustrated by the exceedance probabilities (i.e. probability the loss is 
greater than or equal to a certain amount).  
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III. Base Correlation 
 
i) Base Correlation Basics 
 
The idea of base correlation (McGinty and Ahluwalia [2004]) solves the problem of 
dual correlation as described above. It basically splits a tranche exposure into two 
equity tranches according to: - 
 

),0(),0(),( ACDOBCDOBACDO  . 
 

This is a model-independent idea that simply divides what is effectively a call-spread 
payoff (mezzanine tranche) into two call options (equity tranches). The component 
equity tranches are also known as base tranches. We still need to apply some model to 
price each equity tranche. Although others approaches could be used the simple GCM 
approach is standard. We will therefore express the base correlation pricing approach 
as: - 
 

);,0();,0(),( AB ACDOBCDOBACDO   , 
 

where A  and B  represent the correlations for the attachment and detachment points 
repectively that are used as inputs to the GCM. 
 
More formally, since a CDO tranche can be valued as the present value of the loss and 
coupon payments. We write the present value of the loss payment leg (or discounted 
expected loss), ),( BAEL , as: - 
 



);,0();,0(),( AB AELBELBAEL   . 
 

The duration ),( BAD  or present value of a unit premium leg of the tranche (i.e. the 
risky discounted value of the future premium payments) can be similarly computed 
via: - 
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Since the present value of a tranche is then given by ),()(),( , BADABXBAEL BA   
where BAX ,  is the market premium for the ],[ BA  tranche in basis points per annum 
we finally obtain: - 

 
 );,0();,0();,0();,0( , ABBAAB ADABDBXAELBEL   . 
 

We can immediately note that this decomposition is inconsistent in that is uses two 
different correlations to come up with a tranche value. This has a direct impact of 
creating arbitrage (which we deal with next) but also a more indirect implication that 
the assumption of the distribution of loses over time is not consistent which we will 
re-address later. 

 
 
ii) The strike dimension 
 
The decomposition represented by the above equation allows us to price any tranche 
by just making assumptions about interpolating correlations to obtain A  and B . 
However, the problem is far more complex than first might appear as valuing the 
tranche involves pricing at two different correlation values and this inconsistency 
produces arbitrages. As an example, we show in  Figure 3 the premiums of 1% wide 
tranches or “tranchelets” in increments of 1% (i.e. for a detachment point of x we 
show the running premium of the [x-1%, x] tranchelet). It is noticeable that the prices 
are not arbitrage-free in both the mezzanine region (which is clearly important for 
pricing of many CDOs) and the super senior region which is a potential problem for 
structures such as leveraged super seniors. The price of a tranche is very sensitive to 
the slope of the base correlation curve.  
 
 



Figure 3. Base correlation curve and tranchelet premiums corresponding to our 
standard tranche prices in Table 2. The correlation curve is interpolated with cubic 
splines with additional [Detachment, Base Correlation] points of [0%, 5%] and [60%, 
80%]. 
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The problem with correlation interpolation is that the base correlation curve may be 
extremely smooth6 but the resulting tranche premiums be inconsistent. In Figure 3 we 
can clearly identifying arbitrages where the tranchelet premiums increase with strike 
in the 6% to 9% region and also the 22% to 40% region. We might try many ways to 
treat our base correlation curve such that arbitrage is not permitted but ultimately for a 
truly robust solution we are required to interpolate on a different quantity altogether. 
 

                                                
6 The curve in the example has continuous second derivative, a result of using a cubic spline. 



One obvious way in which to avoid arbitrage is to work with the base tranche 
expected loss curve, );,0( xEL , directly since this is additive across the capital 
structure and has fairly obvious restrictions. The obvious arbitrage restrictions on 
tranchelet premiums imply that the base EL should be monotonically increasing (to 
avoid negative premiums) and concave (to avoid tranchelet spreads increasing with 
seniority). Finally, since we observe the index %)100,0();,0(lim

1
ELxEL

x



  and 

obviously xxEL );,0(   since the value of losses on a tranche cannot be greater than 
the tranche notional. We refer to Parcell and Wood [2007] for a more in-depth 
discussion of these points.  
 
Obviously since we are dealing with only the loss component in our pricing equation, 
we will have to make some assumption about the duration of each tranche. For 
illustrative purposes we will do this in a rather simple way (i.e. not linked the problem 
of allocating losses across strike with that of allocating them over maturity although 
we will return to this point later). In Table 3 we illustrate the calculation of tranche 
expected losses constructed via the market prices and computed durations.  
 

Table 3. Illustration of simple calculation of tranche expected losses (up-front 
premium). The durations are calculated using a Gaussian Copula model with flat 
correlation. 

 Market Premium Duration Tranche EL Base EL 
[0-3%] 25.75% 3.43 1.287% 1.287% 
[3-6%] 60.5 bps 4.60 0.167% 1.371% 
[6-9%] 19.5 bps 4.61 0.081% 1.398% 
[9-12%] 11.0 bps 4.61 0.061% 1.413% 
[12-22%] 6.0 bps 4.61 0.061% 1.440% 
[22-100%] 4.0 bps 4.61 0.203% 1.588% 
Index  35.0 bps 4.58 1.588%  
 
Using the above set of points with a monotonic interpolation7 scheme that ensures all 
of the constraints outlines above are met and gives us a robust way to price tranchelets 
or any tranche on the portfolio. This is illustrated in Figure 4 and the resulting 
tranchelet prices are shown in Figure 5 in comparison with the previous points using 
the arbitrageable base correlation interpolation approach. 
 

                                                
7 There is a rather rich literature on monotonic interpolatation spanning several scientific disciplines. 
Here we use the algorithm of Steffen [1990]. 



Figure 4. Example of arbitrage free interpolation on base expected loss points. 
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Figure 5. Illustration of tranchelet pricing using the quadratic expected loss 
interpolation method compared to the previously described base correlation approach.  
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Aside from some sensitivity to duration assumptions and interpolation methods, the 
above example would seem to suggest that pricing will be unique and therefore 
produce prices which are much more well-defined than using base correlation. This is 
actually not the case as we still need to consider is the behaviour of the base expected 
loss curve below our lower strike of 3%. We could write that 0)0,0( EL  which 
seems mathematically correct but in reality since we do not have an infinitely large 
portfolio this point will be misleading and suggest that our interpolation is more well-
defined than is really the case (and we may struggle to achieve the concavity required 
in the 0% to 3% region). A more appropriate first point on the curve might be 

 UEL ,0  where   NU /1   is the “loss unit” of the portfolio with   as the 
recovery rate in percent and N  representing the number of names in the index. The 
value of  UEL ,0  corresponds to the upfront premium on a first-to-defaut on the 
index. 
 
As an example of this we show in Table 4 tranchelet pricing using base correlation 
where we make different assumptions on the correlation extrapolation below 3% and 
base expected loss interpolation using different assumptions on the extrapolation of 
the expected loss curve. The assumption of   UUEL ,0  corresponds to pricing a 
first to default on the index at %  up-front. Just as we have uncertainty over 
extrapolation of base correlation below 3%, we have uncertainty over the value of   
(although in contrast to the base correlation extrapolation, the choice over   is more 
obvious due to the obvious arbitrage points and for a large portfolio we should expect 
it to be fairly close to unity). 
 



Table 4. Illustration of tranchelet pricing using base correlation and base expected 
loss methods and applying different extrapolation assumptions. We assumed a 
recovery value of 30% which gives %56.0125/)3.01( U . All are running 
premiums in basis points per annum. 

 Base Correlation Base Expected Loss 
 %5%0 

 
%3%0    %20%0     UUEL ,0

 
 

75.0
,0
U

UEL    00,0 EL  

[0-1%] 3272 2719 2377 2875 2174 1760 
[1-2%] 1033 1128 1195 866 1083 1199 
[2-3%] 368 467 552 511 616 752 
 
The summary of this is that whilst the base expected loss method allows us to be 
arbitrage-free, it does not provide additional assurance when pricing tranchelets, 
especially when we are extrapolating below the 3% point. This should not be a 
surprising general conclusion as knowing the [0-3%] tranche premium should not 
allow us to make any firm statement on, for example, the [2-3%] value. 
 
Since we cannot price tranchelets let us conclude by exploring some boundaries of 
pricing. For example, knowing the premium for the [0-3%] tranche what is the 
maximum or minimum premium for the [2-3%] tranchelet? Since our interpolation 
has to be concave then for a given two points the two extremes will be as represented 
in Figure 6. For a set of points then the two bounds will be defined by alternating 
representations corresponding to the two constructions between points B and C. 
 
Figure 6. Illustration of the construction leading to the upper and lower bound 
tranchelet pricing between two given points B and C. 

 
 
These are equated to tranchelet premia and base correlation curves and shown in 
Figure 7. In the lower region, there is clearly a huge amount of uncertainty about 
which base correlation to use. In the more senior area it would seem that the curve is 

A 
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C 
D 



more well-defined but this is just a reflection of the fact that the very minor changes 
in correlation in this region can have a dramatic impact on tranche spreads.  
 
Figure 7. Example of limiting case tranchelet premiums (top) and base correlation 
curves (bottom) that are arbitrage-free.  
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In Table 5 we show the first six tranchelet premiums and illustrate the wide range of 
behaviour that is consistent with the market prices. Note that interpolating linearly on 
the base expected loss corresponds to equal tranchelet premia (this would correspond 
to a default process when several defaults occur simultaneously causing a relatively 
large loss without any chance of intermediate losses). In the the first limiting case 



(Bound1), there is the maximum distribution of value in the [0-3%] region (subject to 
capping the expected loss of the [0-1%] tranche at 0.99 to imply a non-infinite 
running premium). This can be thought of as a situation where two defaults are almost 
certain (in order to hit the [0-1%] tranche) but the [2-3%] tranche is unlikely to be hit 
(requiring five defaults). In order to achieve this maximum distribution, value in the 
[2-6%] region is attributed equally (a consequence of the linear interpolation in this 
region) which means that losses must jump from 2% to 6% with certainty without the 
chance of intermediate losses. Such behaviour may seem unrealistic although it, for 
example, arise as a consequence of a sectorial effect causing many defaults of highly 
dependent credits. Regarding the second limiting case (Bound2), the opposite 
structure is seen as the tranchelets in the [0-3%] region have equal premium (no 
chance of intermediate losses) but the [3-6%] has maximum distribution of value 
(corresponding to a high chance of losses up to 3-4% but not much further). 
 
Table 5. Tranchelet prices in the [0-6%] corresponding to the limiting cases described 
in the text. All are running premiums in basis points per annum. 

 Bound1 Bound2 
[0-1%] 9250.28 1199.2 
[1-2%] 675.0 1199.2 
[2-3%] 61.1 1199.2 
[3-4%] 61.1 146.6 
[4-5%] 61.1 19.6 
[5-6%] 61.1 19.6 
 
 
iii) The maturity dimension 
 
In the previous section we have described the pricing of tranches on a portfolio at a 
given maturity without reference to any other maturity. We now illustrate that this 
procedure is not as unique as it may seem and we should really focus on other parts of 
the credit curve. Assume that we have a tranche market defined by strikes 

],....,,,[ 210 nXXXX . By summing the present value of the loss legs we obtain: - 
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In a similar way, we sum the durations weighted by tranche notional to obtain: - 
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We see that if the tranches cover the entire capital structure, we have %00 X  and 

%100nX  giving  

                                                
8 The up-front premium on the equity tranche was capped at 99% (rather than 100%) so as to give some 
running premium. 
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This means whatever our selection of base correlation points, we obtain the required 
property that a continuum of tranches is equivalent in valuation terms to the index 
corresponding to losses in the range %]100,0[  (which has no dependency on 
correlation and holds even if the premiums are not arbitrage-free and even if they are 
negative). A corollary of this is that if we know the index then it will allow us to 
compute a “missing” non-traded tranche via: - 
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We can see the price of this tranche is therefore determined without reference to 
correlation in the %]100,[ 1nX  region and is effectively determined fixed in the base 
correlation construction by the choice of underlying model (GCM in this case). Such a 
construction, allows us to compute implied prices for the [22-100%] tranche of iTraxx 
Europe or [30-100%] for the CDX equivalent in the US. Indeed this was the method 
used for the data in Table 2 to arrive at the conclusion that the [22-100%] tranche 
should be priced at 4.0 bps9.  
 
The implied price of the [22-100%] tranche seems at first to be reasonable. However, 
we must consider that, whilst the [22-100%] premium is paid on the full notional, the 
maximum loss this tranche can experience is capped depending on the assumed 
recovery value  . When comparing premiums we should therefore incorporate a 
scaling factor according to: -  
 

22,12100,22 %22%100
%22%100 XX





 , 

 
so that if the [12-100%] tranche is paying 6.0 bps then the [22-100%] must pay not 
more than 3.7 bps at 30% recovery10.  
 
The problem illustrated above is a result of the inconsistency inherent with base 
correlation. For example, taking the duration, although we have ensured that the 
weighted tranche duration will match the index duration: - 
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9 For simplicity we used a constant recovery of 30% and also assume flat and homogeneous credit 
curves. 
10 This is calculated from 6.0 × (100% -30% - 22%) / (100% - 22%) 



 
the fact that the different correlations are used on the left hand side of the above 
equation means that our assumptions over the distribution of losses over time are 
inconsistent.  
 
Let us illustrate the impact of this with a simple construction. Rather than working 
with expected loss, we consider the expected notional (which can be compared to the 
expected loss or up-front premium with no discounting effects and so by integrating 
over this curve we can rather easily arrive at a price). We use the GCM to define the 
distribution of losses at the maturity but then manually specify how the expected 
notional changes over time (we know only that this should be a monotonically 
decreasing function between 100% and 0%). We focus solely on the equity tranche 
since this contains the most risk and will therefore create the biggest impact. Figure 8 
illustrates two different expected notional curves for the [0-3%] tranche which both 
reproduce the quoted market price. The close to linear representation will have the 
shorter duration as the losses are more likely to occur in the early years. Since the [0-
3%] trades at a running premium of 500 bps, the different durations will correspond to 
different expected losses. Finally, these different equity durations will give rise to 
different implied premiums of the [22-100%] tranche.  
 

Figure 8. Illustration of the distribution of losses within the equity tranche and the 
resulting impact on the price of super senior risk. 
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By changing the distribution of the equity tranche expected loss across time 
(effectively the timing of the first few defaults), we can effectively move the value of 
the super senior risk significantly. If the curve is convex downwards, then losses will 
occur later and have less value due to discounting so the expected notional at the 
maturity date must decrease so as to match the market price. This will require moving 
value from the rest of the capital structure, effectively causing a decrease in the 
implied value of the [22-100%] protection. The basic point is that a reasonably 



modest change in the distribution of equity losses can move the [22-100%] premium 
by a significant amount. 
 
For equity tranches, since they carry such a significant portion of risk, they are very 
sensitive to the distribution of losses over time. Typically [0-3%] IG tranches trade 
with an up-front payment and an additional 500 bps running premium. But IO 
(interest only) and PO (principal only) variants are also possible. Translation between 
fair premiums is not trivial as should be apparent from the last example.  
 
We note that the impact of this effect has broader implications. Consider the high-
yield CDX tranche market. Here, the equity tranches trade on an all up-front basis and 
so do not require any duration assumptions in order to price. However, such 
assumptions can be still important for the computation of other quantities such as 
deltas. We consider the three maturities (3Y, 5Y, 7Y) and as before we allow the 
distribution expected notional to vary between the points (i.e. assuming we have no 
information on credit spreads and correlation at intermediate points). We consider two 
possible shapes of the tranche expected notional curves which differ mainly by the 
way in which losses evolve in the first 3 years as shown in Figure 9. 
 
Figure 9. Illustration of two different tranche expected loss distributions that both fit 
the [0-10%] HY CDX tranches. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7

Maturity (years)

Eq
ui

ty
 T

ra
nc

he
 E

xp
ec

te
d 

No
tio

na
l

Case 1 Case 2

 
 
By changing the distribution of losses for the first three years, we can have quite a 
significant impact on quantities such as the expected loss of the tranche and delta11.  
 

                                                
11 Here delta represents the amount of the same maturity index that would be needed to hedge the 
equity tranche. Since we use the GCM to determine the terminal loss distribution this provides a means 
to represent the delta. 



Table 6. Illustration of different quantities for CDX HY equity tranches implied by 
the two tranche expected notional profiles in Figure 9.  

 3Y 5Y 7Y 
Market Quote 55.38% 76.38% 83.50% 
Expected Notional (case 1) 41.15% 15.20% 5.46% 
Expected Notional (case 2) 48.53% 12.59% 2.87% 
Delta (case 1) 4.12 1.79 0.91 
Delta (case 2) 4.10 1.60 0.66 
 
We emphasise that, whilst the impact of term structure might not seem significant in 
many cases and use of simple base correlation might appear valid, the impact of term 
structure can be subtle and should ideally be considered for any sophisticated 
application beyond basic pricing. We will now describe a simple way in which to 
incorporate this into the standard base correlation approach. By writing conditional 
default probabilities as: - 
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we can introduce a term-structure of correlation with respect to t. It is unlikely that 
this corresponds to a model in the true sense (i.e. that we can specify some 
multivariate distribution of default times). This mixing of correlations across maturity 
is analogous to the mixing over strike done with the standard base correlation 
technique. We can therefore think of this approach as a 2-dimensional base 
correlation construction. Just as we have arbitrage in the strike dimension, our time 
construction as defined above may also create arbitrage in the maturity dimension. 
However, by choosing a functional form for )(ti  we bootstrap a term structure of 
base correlation across both maturity and strike. This is illustrated in Figure 10 for 
CDX tranches corresponding to 5, 7 and 10-year maturities. 
 

Figure 10. Schematic overview of calibration procedure for base correlation term 
structure. 
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For example, the premium of the 7Y %]73[   tranche allows us to define the 
forward12 YY 7,5

%]70[   correlation parameter, knowing the values of Y5
%]30[  , Y5

%]70[   and 
YY 7,5
%]30[  . An example of the resulting correlation surface is generated in Figure 11. 

This approach can then be used to define tranche premia for intermediate maturities. 
If we have more information such as IO or PO equity tranches, this can be used to 
calibrate the shape of the correlation surface over time.  
 

Figure 11. Illustration of maturity term structure using )(t  within the base 
correlation framework to calibrate to iTraxx quotes of 5, 7 and 10-year maturities. We 
assume piecewise linear interpolation in the maturity dimension. 
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iv) Bespoke pricing – the spread dimension 
 
Finally, we come to the core pricing problem in structured credit which is the pricing 
of a bespoke tranche. We would like to use the index correlation to imply a bespoke 
correlation since this will provide a mechanism to hedge correlation risk via the index 
tranche market. However, the the problem is complex since, a typical bespoke 
portfolio will differ from the index in many ways such as riskiness, number of names, 
heterogeneity and so on. The portfolio may have some names that overlap with the 
index but this is commonly a relatively small fraction. So, in addition to the problems 
already described, we have this portfolio transformation problem to deal with. 
 
In the absense of any more sophisticated approach, we can try and “map” bespoke 
correlations from index correlations. The principal of such a procedure is to equate 
each (base) tranche of the bespoke to one of equivalent seniority on some chosen 
reference index. An obvious approach is to choose the portfolio expected loss as a 

                                                
12 Forward correlation here just means the specification of )(ti rather than being related to any real 
dynamic quantity. 



method for doing this. Let us denote by NELELS /%)100,0(  the scaled expected 
loss of a given portfolio (where N  is the number of names in the portfolio) and write: 
- 






























portfolio

indexindexbespoke

ELS
ELS

BB)( . 

 
The rationale of the above formula is that the most obvious change is due to the 
relative riskiness of the bespoke portfolio vis a vie the index. The ELS is convenient 
to work with as it is a model independent measure of the riskyness of the portfolio. As 
our portfolio becomes more risky, then each unit of subordination has less effect and 
the tranche is therefore more junior. So scaling by some ratio of the expected losses of 
the portfolios makes some intuitive sense and is very simple to implement. We will 
refer to   as the rescaling parameter. The scaling of 1  means that equal 
correlation points occur when we have the same ratio of subordination to expected 
loss which makes intuitive sense. We will refer to this as “linear scaling”. Setting 

0  we have a “sticky scaling” where the correlations are the same, even when the 
bespoke portfolio might have a very different riskiness.  
 

)()( BB indexbespoke      sticky scaling 
 
























portfolio

indexindexbespoke

ELS
ELSBB  )(  linear scaling 

 
Let us apply the methods to price a bespoke portfolio which is identical to the index 
but with the average spread level13 at 40 bps rather than 35 bps. We start from 
arbitrage-free index tranchelet premiums as computed using the monotonic 
interpolation on expected losses using   UUEL ,0  in Table 4. We then apply both 
sticky and linear scaling methods as described. In Table 7 we show the premiums 
computed. Clearly the different scaling methods can introduce significantly different 
behaviour and we also note the re-introduction of arbitrage. Using linear scaling the 
bespoke [5-6%] tranchelet is more expensive that the [4-5%] tranchelet. Furthermore, 
the [4-5%] bespoke tranchelet is cheaper than the same tranchelet on the index which 
since the portfolio is uniformly more risky can be also identified as an arbitrage14. 
 

                                                
13 All the spreads were scaled by a constant factor to achieve this. 
14 When different aspects are involved such as size of portfolio and heterogeneity, we wouldn’t 
necessarily identify this as an arbitrage. 



Table 7. Illustration of bespoke pricing using both linear and sticky scaling methods 
compared to the index tranchelet prices defined in an arbitrage-free way using the 
monotonic interpolation method described previously. 

 Index Bespoke 
  Linear scaling Sticky scaling 
[0-1%] 2869.5 3317.7 3213.2 
[1-2%] 865.6 1045.2 1027.4 
[2-3%] 510.9 608.4 619.4 
[3-4%] 98.1 252.9 134.5 
[4-5%] 57.4 47.7 79.6 
[5-6%] 49.0 62.8 66.0 
[6-7%] 27.6 46.2 38.8 
[7-8%] 19.9 28.6 28.4 
[8-9%] 17.9 22.2 25.2 
[9-10%] 15.2 20.3 21.4 
[10-11%] 11.9 18.2 17.0 
[11-12%] 9.1 15.4 13.3 
 
The tranchelet prices for the bespoke portfolio are illustrated graphically in Figure 12. 
We can see that both scaling methods can produce arbitrages, even though the initial 
index tranchelet prices are arbitrage-free. This is particular bad in the senior region 
where we should also note that we have numerical problems due to the fact that the 
base correlation curve is close to 100%. 

 



Figure 12. Illustration of bespoke pricing using both linear and sticky scaling 
methods compared the index tranchelet prices defined in an arbitrage-free way using 
the monotonic interpolation method described previously.  
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The above effects are not dramatic but can become more important when we look at 
portfolios with significantly different characteristics. It seems that in the market a 
large number of different scaling methods of differing complexity have been studied. 
To give a flavour of the issues involved we will discuss one slightly more 
sophisticated and theoretically sound approach that can be used to scale from index to 
bespoke portfolio.  
 



A particular characteristic of the scaling methods presented thus-far is that they will 
scale in exactly the same way across the entire capital structure. Linear scaling only 
adjusted for the average riskyness of a portfolio. For example, two bespoke portfolios 
with the same expected loss will be priced on the same correlation curve even if they 
have rather different other characteristics.  
 
In general we can consider that there are many factors that should impact the pricing 
of a bespoke CDO.  
 
1. Tranche in question 
2. Average spread levels 
3. Dispersion of spreads 
4. Steepness of base correlation curve 
5. Size (granularity) of portfolio 
 
Intuitively we want our bespoke tranche to be the same seniority as a particular index 
tranche. Let us consider the ratio    %100,0/)(;,0 ELxxEL   which represents the 
relative amount of risk in the base tranche. Then we propose that base tranches with 
the same ratios are of equivalent seniority. 
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We then need to solve the above non-linear equation for the function )(B , 
whereupon we can price any tranche on the bespoke portfolio. 
 
Using the same example before of a 40 bps bespoke portfolio, we show the implied 
normalisation factor in Figure 13.  
 



Figure 13. Normalisation factor (.)  computed for the bespoke portfolio described. 
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The TLS prices obtained with this approach are seemingly more reasonable, 
especially in the senior region, as shown in Figure 14. Obviously, many combinations 
of model and mapping methodology are possible, for example see the recent article of 
Smithson and Pearson [2008]. 
 



Figure 14. Illustration of bespoke pricing using tranche loss scaling compared to the 
index prices. 
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The last example hopefully illustrates a general theme with base correlation in that 
whilst the basic idea is not without problems, there are various improvements that can 
be applied to make the approach more robust. But we should keep in mind that such 
improvements will not solve the fundamental problems with the base correlation 
approach. Let us now consider to what degree it is possible to extend the basic 
modelling framework to more exotic payoffs. 
 
 
 
 



IV. Exotic CDOs 
 
So far we have concentrated on single factor correlation approaches, the skew implied 
by pricing across strike and maturity and the issue of mapping between index and 
bespoke correlations. We consider some more complex problems that arise commonly 
in everyday pricing and which can all be broadly considered as relating to multi-factor 
correlation models. As before, we will aim to illustrate that sensible extensions of the 
standard modelling approach are possible although the fundamental problems 
associated with base correlation always will be lurking in the background. 
 
 
i) Barbell and Regional Impacts 
 
Even the simplest bespoke CDO tranche will commonly contain both European and 
US names. Aside from the issues already discussed this creates a problem that we 
treat all correlations for a given portfolio as being equal which will cause a problem, 
for example, if iTraxx (Europe) and CDX (US) correlation are unequal. A more 
extreme case of this might be pricing a “barbelled portfolio” (large dispersion in 
underlying spreads). We observe both investment grade and high yield correlation 
surfaces and might want to price a portfolio with both investment grade and high yield 
names. 
 
We can readily extend the basic gaussian copula model as follows: - 

 

iikiki VVV ~1 )()(   , 
 
so that names are divided into sets denoted by )(ik  and each set has its own 
correlation of )(ik . The different sets may represent a number of things such as 
geographical region (as in iTraxx/CDX) or spread level (as in a barbelled portfolio 
with investment grade and high yield spreads).  
 
We apply this methodology to our standard example where we simply switch 5 names 
to be high-yield having a spread of 388 bps. In addition to our standard IG correlation 
market (Table 1) we used a HY correlation market (CDX HY) as shown in Table 8. 
High yield correlations tend to differ significantly from investment grade ones, so 
some mixing of these correlation parameters is not advisable. 
 
Table 8. Tranches in the high-yield portfolio (CDX HY) used by pricing. The [0-
10%] and [10-15%] tranches trade on an up-front basis whereas the remaining 
tranches are in basis points per annum. 

 Premium Correlation 
[0-10%] 77% 30.55% 
[10-15%] 47% 32.75% 
[15-25%] 620 bps 41.10% 
[25-35%] 207 bps 56.29% 
[0-100%] 387 bps  
 



We show in Table 9 premiums of tranches on this portfolio (120 IG and 5 high yield 
names). We consider premiums as defined from both IG and HY correlations 
separately and those corresponding to the approach outlined above.  
 

Table 9. Illustration of pricing of tranches on a barbelled portfolio with five HY 
names using linear scaling in all cases. The IG and HY only prices correspond to 
pricing from just the investment grade and high yield correlation surfaces directly.  

 125 IG names portfolio 120 IG names, 5 HY names portfolio 
  IG correlation HY correlation Model 

[0-3%] 25.75% 38.38% 23.78% 38.26% 
[3-6%] 60.5 130.6 14.12 150.4 
[6-9%] 19.5 28.3 171.80 67.3 
[9-12%] 11.0 18.3 118.49 31.3 

[12-22%] 6.0 9.1 64.68 12.6 
[22-100%] 4.0 2.70 5.54 4.25 

 
It is clear that the linear scaling method directly on the IG or HY correlations can give 
rise to some rather unusual results. Most obviously is the massive underpricing of the 
[3-6%] tranche using the HY surface. We can notice that using the more consistent 
model we will price equity tranche close to their HY correlation price which is natural 
since most of the equity risk will be due to high yield defaults. On the other hand, the 
more senior tranches have prices which become increasing driven by the IG price 
which is not surprising since the IG names make up 80% of the portfolio notional. 
Finally we can also comment that the model prices are not necessarily bounded by the 
IG and HY only prices as is the case for the [3-6%] tranche. 
 
The method described therefore appears valuable for a reasonably benign case of a 
few high-yield names but it is also interesting to ask the question as to how far we can 
push the approach before we see obvious problems emerging. In Table 10 we 
illustrate the impact of making more and more names high yield. It appears we can 
push the approach to a reasonable degree with the first arbitrage occuring when we 
have 25 high yield names in the portfolio (the addition of 5 more high yield names 
causes a descrease in the [9-12%] tranche premium). 
 
Table 10. Illustration of pricing of tranches on increasingly barbelled portfolio using 
the method described in the text. 

 125 IG 
 

120 IG 
5 HY 

115 IG 
10 HY 

110 IG 
15 HY 

105 IG 
20 HY 

100 IG  
25 HY 

[0-3%] 25.75% 38.26% 49.43% 59.44% 68.66% 77.47% 
[3-6%] 60.5 150.4 261.6 414.6 592.3 777.0 
[6-9%] 19.5 67.3 116.6 136.8 171.3 240.4 

[9-12%] 11.0 31.3 65.3 116.2 146.2 141.0* 
[12-22%] 6.0 12.6 22.7 37.5 58.8 87.5 

[22-100%] 4.0 4.25 4.82 5.51 6.36 7.42 
 
The above approach involves representation of the cross-correlations as )()( jkik   . 
We could generalise this to for example the pseudo 2F model proposed by Gregory 



and Laurent [2004] which allows flexibility over the cross-correlation parameters at 
additional computational cost.  
 
 
 
ii) Long/Short CDOs 
 
A long/short CDO is one in which names may represent either a long or short 
exposure. In the latter case it is a though the name has a negative notional and a 
default will produce a gain rather than a loss for the total portfolio. The portfolio 
losses are then made up by the net of losses (from long defaults) and gains (from short 
defaults). The short names can be seen as adding an extra (stochastic) buffer to the 
subordination of a tranche. 
 
However, as we have the possibility of negative portfolio losses then presumably we 
must also allow the attachment and detachment points to be negative. Let us consider 
the expression for the loss )(tM  of a CDO tranche as a function of the portfolio loss 

)(tL  and the attachment and detachment points A  and B : -  
 

  )(,)(min)( ABAtLtM   . 
 

If the attachment point A  is negative then then initial notional will be 
BMAB  )0(  since 0)0( L . However we know that the maximum tranche 

notional can be AB  . This can be thought of as a tranche which can increase in 
notional through time, i.e. any short defaults may reinstate tranche loses caused 
previously from long defaults15. This creates a perhaps unusual scenario where a 
tranche that has been completely wiped out still has some value as long as there are 
enough short names in the portfolio whose default could potentially bring the tranche 
“back to life”. We see therefore that this type of long/short CDO structure16 would fit 
the standard pricing methodolody naturally with only a modification for the fact that 
short names have negative notionals and the possibility of negative losses. This can 
readily be accomodated in analytical frameworks for computing the underlying loss 
distribution such as the FFT method or recursion approaches.  
 
Extending the expected loss mapping procedure for a long/short CDO would 
introduce an obvious problem that, since expected losses on short names would be 
negative, we could in theory end up with a zero denominator in the standard mapping 
formula. This might not be of obvious concern when the expected loss of the short 
names is small compared to the long only ones. On the other hand, such a problem is 
maybe more naturally handled using a more complex mapping method such as the 
TLS described earlier. Such an approach has the advantage that pricing a long/short 

                                                
15 We could also think of structuring a “sub-equity” tranche where A is less than zero. Whether or not 
this is a viable product, it does form part of the full capital structure that represents all possible losses 
on the long/short portfolio. 
16 If we would rather create a long/short portfolio in which tranche notional cannot increase then we 
create a path-dependency in the pricing. This additional value for the protection buyer might be 
relatively small in most cases (assuming the short names are dominated by the long names) but will be 
much harder to price. 



portfolio does not obviously represent any additional mapping complexity (such as 
negative expected losses) compared to the long only case.  
 
As an example we take our 125-name example portfolio and flip names from long to 
short and price with all three scaling methods. The results are shown in Table 11. The 
ELS method produces arbitrages on the most senior two tranches with only 5 short 
names. In contrast, the sticky and TLS gives more reasonable prices with only a small 
arbitrage introduced for 25 short names on the [12-22%] tranche. 
 



Table 11. Illustration of pricing of long/short CDOs with standard expected loss 
rescaling (ELS) and tranche loss rescaling (TLS). Premiums representing arbitrages 
are market with an asterisk.  
a) Linear scaling 
 125 Long 120 long 

5 short 
115 long 
10 short 

110 long 
15 short 

105 long 
20 short 

100 long 
25 short 

[0-3%] 25.75% 23.73% 21.50% 19.05% 16.30% 13.25% 
[3-6%] 60.5 57.5 54.8 52.5 50.8 49.7 
[6-9%] 19.5 19.6* 19.6 19.3 18.9 18.2 
[9-12%] 11.0 10.6 10.3 10.1 9.9 9.9 
[12-22%]  6.0 8.1 10.1 12.0 13.8* 15.3* 

[22-100%]  3.8 3.3 2.8 2.4 1.9 1.4 
[0-100%]  35.0 33.55 31.94 30.18 28.26 26.16 

 
b) Sticky scaling 
 125 Long 120 long 

5 short 
115 long 
10 short 

110 long 
15 short 

105 long 
20 short 

100 long 
25 short 

[0-3%] 25.75% 24.08% 22.22% 20.13% 17.76% 15.07% 
[3-6%] 60.5 58.17 55.9 53.7 51.5 49.4 
[6-9%] 19.5 18.7 17.9 17.0 16.2 15.3 
[9-12%] 11.0 10.6 10.2 9.7 9.2 8.7 
[12-22%]  6.0 5.9 5.8 5.7 5.5 5.2 
[22-100%]  3.8 3.1 2.7 2.2 1.7 1.3 
[0-100%]  35.0 33.52 31.91 30.15 28.23 26.13 

 
c) TLS 
 125 Long 120 long 

5 short 
115 long 
10 short 

110 long 
15 short 

105 long 
20 short 

100 long 
25 short 

[0-3%] 25.75% 23.88% 21.82% 19.56% 17.06% 14.27% 
[3-6%] 60.5 56.4 52.3 48.0 43.8 39.7 
[6-9%] 19.5 18.8 17.9 16.9 15.6 14.2 
[9-12%] 11.0 10.3 9.6 8.9 8.3 7.8 
[12-22%]  6.0 5.7 5.5 5.4 5.3 5.7* 
[22-100%]  3.8 3.6 3.4 3.1 2.8 2.5 
[0-100%]  35.0 33.55 31.94 30.18 28.26 26.16 

 
As before we can comment that the long/short methodology using base correlation 
and TLS seems to work reasonably well up to a point. 
 
 
iii) Prepayment 
 
Another evolution of CDOs underlying has been to use other asset classes which may 
provide enhanced yields compared to standard CDS. One such example is leveraged 
loan CDS (LCDS) which may be cancelled if the underlying loan is prepayed17. Index 

                                                
17 The market mainly trades a so-called US style of LCDS contract which means that the prepayment 
event only occurred when there are no outstanding loans that are suitable reference assets. Under 
current market standards, all LCDS contracts that reference North American credits cancel with no 



tranches of leveraged loan portfolio, such as LCDX (which is a portfolio of 100 
LCDS contracts) now trade. In the event of a refinance event on any loans in the 
portfolio, the most senior tranche is amortised by the relevant amount. From a 
modelling perspective, we now have two types of events, default and prepayment. As 
a simple extension of the standard approach, we write: - 

 
 

ii VVV ~1     default events 
  

ii VVV ~1    prepayment events 
 
Here we maintain a 1-factor framework but have the ability to model prepayment 
rates that are negatively correlated to default events (since prepayment are more likely 
to occur in an improving credit environment). We define prepayment events in a 
similar way to defaults via )1(1

ii pk    with ip  representing the prepayment 
probability. We can interpret ik   as an upper barrier where prepayment is triggered; 
correlation will mean that if there have been many defaults then no prepayments are 
likely. This (negative) correlation is determined by    in the 1-factor framework 
and a multi-factor model would give more flexibility over the dependency amongst 
defaults and prepayments. The conditional probability of neither default nor 
prepayment on a given name is: - 
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An illustration of pricing with a model of this type is shown in Table 12. Most tranche 
premiums decrease due to the possibility of prepayment occurring before default. 
However, we can see that prepayment has quite a significant impact on the most 
senior tranche since it shortens the duration and therefore increases the premium quite 
significantly. This is because the [15-100%] tranche is amortised by prepayment 
events. 
 

                                                                                                                                       
payment between counterparties if the credit prepays all the loans pari passu to the reference Loan 
under the LCDS contract (a “Prepayment Event”).   



Table 12. Prices of 5-year LCDX tranches with models with and without prepayment 
of names. The average spread of the portfolio is around 205 bps and we assume 
recovery of 60% on each LCDX contract. A flat prepayment rate of 5% is used for 
illustration purposes. Premiums are up-front for the [0-5%] and [5-8%] tranches and 
in bp pa for the other tranches. 

 No Prepayment With prepayment 
 Premium Duration Premium Duration 

[0-5%] 74.14% 2.76 70.18% 2.86 
[5-8%] 44.45% 3.87 37.89% 3.98 
[8-12%] 647.2 4.22 494.2 4.31 

[12-15%] 329.9 4.44 190.6 4.53 
[15-100%] 56.2 4.29 60.4 3.73 
[0-100%] 205.0 4.21 205.0 3.74 

 
 
Conclusions 
 
In this chapter we have described the standard Gaussian copula model and associated 
base correlation construction that have both been used extensively in the structured 
credit market. We have considered the different problems associated with CDO 
pricing, from the strike dimension, the maturity dimension and the bespoke portfolio 
mapping. Whilst highlighting the drawbacks of these combined approaches, we have 
also tried to illustrate their value if used with care. We have also illustrated that base 
correlation can be (cautiously) extended to tackle more exotic CDO payoffs.  
 
Although there is much effort going into more advanced methods for pricing synthetic 
CDOs, it is likely that base correlation approaches will be used in one form or another 
for some time to come. For this reason, a good understanding of the capabilities and 
limitations of this standard approach are important. Given the simplicity of some of 
the ideas described here, we might argue that such approaches may be still widespread 
until some significant breakthrough in CDO pricing is made. 
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