

Jon Gregory

Quantitative Finance Seminar, Fields Institution, Toronto 6th February 2013

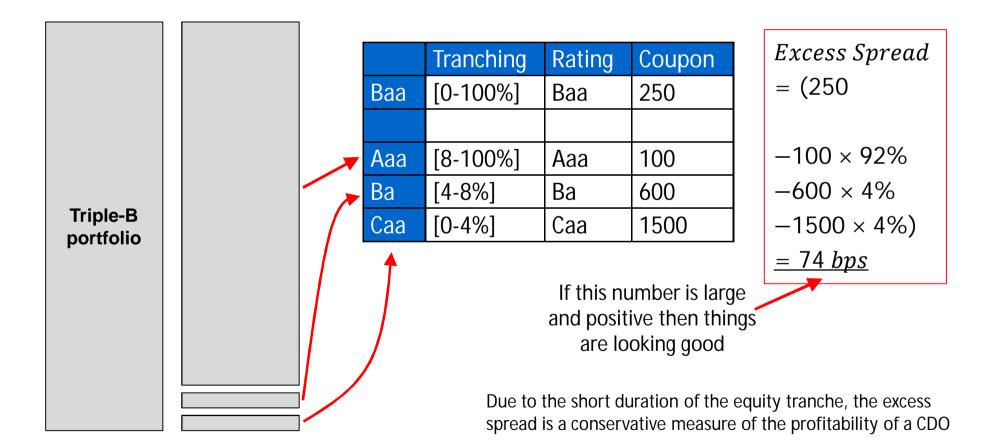
- In the period 1998 to 2007, CDOs increased exponentially in both volume and diversity
 - Prior to 2007, the CDO was seen as a successful financial innovation
- However, the global financial crisis was partly catalysed by an implosion in the CDO market and caused massive losses for:
 - Issuers (banks) through investments held, litigation, failed hedges, reputation
 - Investors, both in terms of default losses and those from forced liquidation
 - Third parties (e.g. rating agencies through loss of fees, reputation issues and litigation)
- An obvious question is therefore:
 - Is there something fundamentally wrong with the concept of a CDO?
 - Does it have economic value or is just a money making tool for investment bankers?

• This analysis will be based on a CDO under the following assumptions

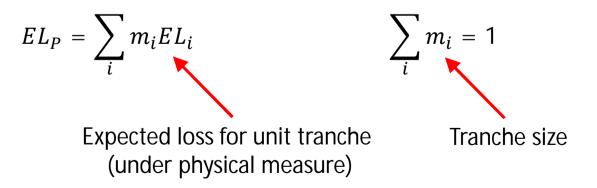
- Full capital structure (although this is not especially important)
- Static portfolio (again particularly important as we care mainly about the initial portfolio)
- Corporate credit risk (due to the richer data than for asset basked structures)
- The ratings process used by ratings agencies for CDO structures during the period in question

• A CDO is broadly speaking

- An investment at risk to a pre-defined range of losses on a certain portfolio
- As such, the risk assessment requires an analysis of the multidimensional default distribution (which is quite complex)


Example CDO

Class	Amount	Tranching	Rating	Funding	
Super senior	850	[15-100%]	NR	Unfunded	
Class A	50	[10-15%]	Aaa/AAA	Funded	
Class B	30	[7-10%]	Aa2/AA	Funded	
Class C	30	[4-7%]	Baa2/BBB	Funded	
Equity	40	[0-4%]	NR	Funded	



• Very simple example (more rigorous one later)

- Suppose there is a continuum of underlying tranches (full capital structure)
 - Each tranche is denoted by *i*
 - The underlying portfolio is denoted by p
- Consider expected loss as the main quantitative characteristic of the tranche
 - Expected loss must be conserved across the structure

• Investors will demand a premium for the losses they take

- Let us represent this as a multiplier α which varies for the different tranches and original portfolio and therefore represents the risk aversion for a particular seniority
- Investors will be paid $\alpha_i m_i EL_i$
- The CDO will "work" if

$$\alpha_p EL_P > \sum_i \alpha_i m_i EL_i$$

- This basically requires that it is possible to buy protection cheaper via the CDO tranches than it is on the underlying portfolio
- Note that the *α* will be determined via the coupon demanded on the various tranches by investors

• How do we represent α ?

- The primary consideration of investors was the rating of the underlying tranche
- In turn, the fundamental driver of ratings would be the expected loss of a tranche (or default probability in the case of Standard & Poor's)
- Hence we assume $\alpha_j = \left(\frac{a}{EL_j}\right)^b$ Properties - Risk-neutral investors, b = 0
 - Risk aversion for a, b > 0
 - More relative risk aversion for small expected losses

EL

Criteria for a CDO to work

- What parameters are required for a CDO to work?
 - We require:

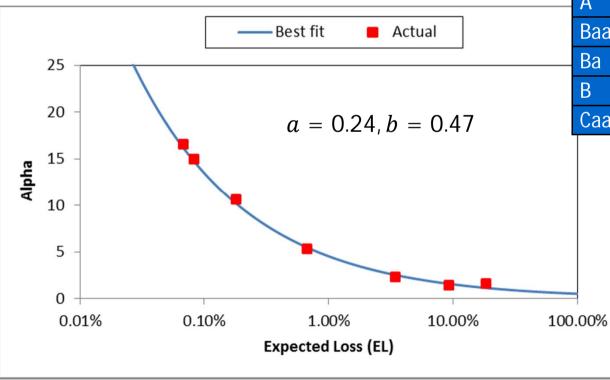
$$\alpha_p EL_P > \sum_i \alpha_i m_i EL_i \qquad \qquad \alpha_j = \left(\frac{a}{EL_j}\right)^b$$

– Which becomes:

$$\left(\frac{a}{EL_p}\right)^b EL_P > \sum_i \left(\frac{a}{EL_i}\right)^b m_i EL_i$$

– Simplifying to:

$$EL_P^{1-b} > \sum_i m_i EL_i^{1-b}$$


– Which is satisfied when b < 1

Example calibration

- Hull, Predescu and White (2005)
 - Time period, December 1996 to July 2004
 - Merrill Lynch bond indices and Moody's data

	Default		
	Real world	Risk-neutral	Ratio
Aaa	4	67	16.8
Aa	6	78	13.0
А	13	128	9.8
Baa	47	138	5.1
Ba	240	507	2.1
В	749	902	1.2
Caa	1690	2130	1.3

Assume recovery rate of 40%

Back to a simple example

- Rating assumptions
 - Expected loss based
 - Gaussian copula approach with flat correlation of 20%

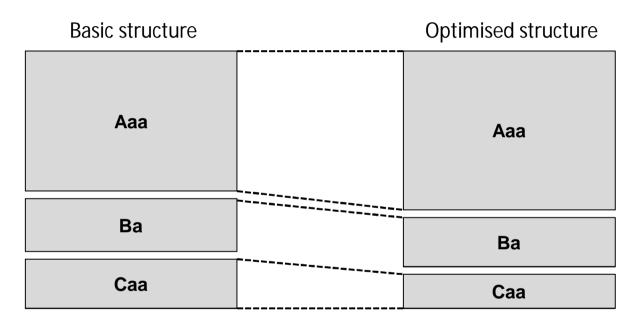
Rating	Tranche	5-year	Multiplier	Protection	Size	Spread	
		exp loss		value		(bps)	Excess Spread
Baa	[0-100%]	1.296%	5.1	6.610%	100%	144	= (144
Aaa	[8-100%]	0.072%	16.8	1.210%	92%	26	-26 × 92%
Ва	[4-8%]	6.702%	2.1	14.074%	4%	321	-321 × 4%
Caa	[0-4%]	36.498%	1.3	47.447%	4%	1376	-1376 × 4%)
		1					<u>= 52 bps</u>

Hamilton, D., P. Varma, S. Ou., and R. Cantor, "Default & Recovery Rates of Corporate Bond Issuers, A Statistical Review of Moody's Ratings Performance, 1920-2003", 2003, Moody's Investor Research, January.

Hull, J., M. Predescu and A. White, 2005, "Bond Prices, Default Probabilities and Risk Premiums" Journal of Credit Risk, Vol. 1, No. 2, pp. 53-60.

Net protection value = 6.610% - 1.210% × 92% + 14.074% × 4% + 47.447% × 4% = <u>3.036%</u>

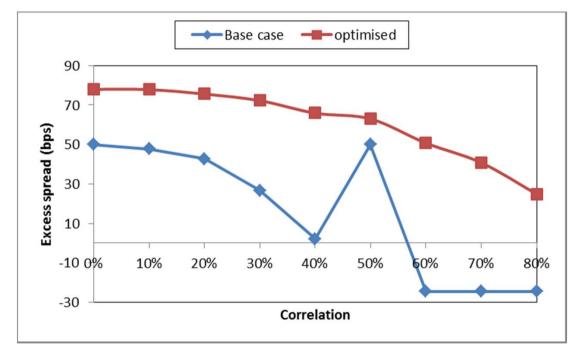
- Assuming investors demand a return based on the expected loss (via the rating) of a tranche
 - A CDO always "works" due to the risk preferences of investors (the equity tranche is relatively cheap to get rid of due to the small alpha multiplier)
- Another implication of this is that rating agency modelling assumptions cannot cause the CDO to fail
 - For example, let us look at correlation assumptions

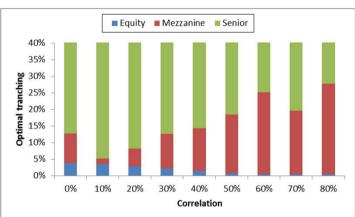


• Excess spread as a function of flat correlation assumptions in rating model

- 60 Previous example 50 40 Excess spread (bps) 30 20 10 0 70% 10% 20% 30% 40% 50% 60% 80% 0% -10 -20 -30 Correlation
- CDO clearly "fails" at high correlation

• Previous failure was due to the granularity in the ratings process


• Therefore we assume a simple optimisation


- Make the equity tranche small enough to just support a given rating (Caa is best)
- Find the size of the mezzanine tranche to give the best excess spread

Optimized structure (2)

• Now the CDO works at all correlation levels

- Note there is still some inherent granularity
 - Can't get any worse than Caa or better than Aaa

• A CDO works due to

- The risk preferences of investors
- The expected loss methodology used in the ratings process

• A CDO is not a zero sum game

- Both issuers and investors (and third parties) can gain
- Just because an issuer makes money, no direct implication that investors are getting a bad deal

• Rating agencies were not at fault?

- No modelling assumptions would have caused CDOs to be unprofitable
- Although rating agencies primary reliance on quantitative models based on expected loss as the only metric could be seen as too simplistic and a fundamental flaw

- Lack of proper assessment of counterparty risk in the structuring process
 - The more senior the tranche, the more counterparty risk (relatively) see my book!
 - Large senior tranches were offloaded to monoline insurers without any collateral terms to mitigate the counterparty risk
 - E.g. see Gregory, "A free lunch and the credit crunch", Risk, August 2008
- Lack of appreciation of the systemic risk in senior tranches
 - Were investors sufficiently compensated for this?
 - Gibson, M., 2004, "Understanding the risk of synthetic CDOs", Finance and Economics Discussion Paper, 2004–36, Federal Reserve Board, Washington DC / Coval et al, 2009, "Economic catastrophe bonds," American Economic Review, 99(3), 628–66.

• Maybe there is sufficient value in a CDO to overcome the above problems

– But the market was too greedy and now it may be too late!