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APPENDIX 10A: Exposure and swaption analogy. 

 

Sorensen and Bollier (1994), effectively calculate the CVA of a swap position and 

show this can be written as:  

 

𝐶𝑉𝐴𝑠𝑤𝑎𝑝 = 𝐿𝐺𝐷∑𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛(𝑡; 𝑡𝑖, 𝑇)

𝑛

𝑖=1

𝑃𝐷(𝑡𝑖−1, 𝑡𝑖). 

 

Whilst more details on CVA computation are given in Chapter 12 and Appendix 12, 

we can note that in the above formula the expected exposure (EE) is represented by 

𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛(𝑡; 𝑡𝑖, 𝑇) which is the value today of a European swaption on the underlying 

swap. The swaption has an exercise date of 𝑡𝑖, which is the potential default time in 

the discretised CVA formula and the underlying swap is defined by the period [𝑡𝑖, 𝑇].
1
  

 

The above shows that the EE for the purpose of calculating the CVA of the swap can 

be represented as a series of swaption values. The intuition is that the counterparty has 

the “option” to default at any point in the future and therefore effectively cancel the 

swap. Not only is this formula useful for analytical calculations, it is also quite 

intuitive for explaining CVA. 

 

An interest rate swaption can be priced in a modified Black-Scholes framework via 

the formula:  

 

[𝐹Φ(𝑑1) − 𝑋Φ(𝑑2)]𝐷(𝑡
∗, 𝑇)   (payer swaption) 

 

[−𝐹Φ(−𝑑1) + 𝑋Φ(−𝑑2)]𝐷(𝑡
∗, 𝑇)  (receiver swaption) 

 

𝑑1 =
ln (

𝐹
𝑋) + 0.5𝜎𝑆

2(𝑡∗ − 𝑡)

𝜎𝑆√𝑡∗ − 𝑡
= 𝑑2 + 𝜎𝑆√𝑡∗ − 𝑡 

   

Where 𝐹 is the forward rate of the swap, 𝑋 is the strike (the fixed swap of the 

underlying swap), 𝜎𝑆 is the swap rate volatility, 𝑡∗ is the maturity of the swaption (the 

time horizon of interest). The function 𝐷(𝑡∗, 𝑇) represents the underlying swap 

duration (annity value) for which the maturity is (𝑇 − 𝑡∗). The exposure of the swap 

will be defined by the interaction between two factors: the swaption payoff, e.g. 

𝐹Φ(𝑑1) − 𝑋Φ(𝑑2), and the duration. These quantities respectively increase and 

decrease monotonically over time. The overall swaption value therefore peaks 

somewhere in-between as illustrated in Figure 10.1 and Spreadsheet 10.1. 

  

                                                 
1
 There could be a question of whether the swaption is cash or physically settled. This relates to the 

close out discussion in Chapter 14. 
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APPENDIX 10B: Comments on exposure models by asset class 

 

 

i) Interest rates 

 

In the Hull and White model, the “short rate” (short-term interest rate) is assumed to 

follow the following process:  

 

𝑑𝑟𝑡 = [𝜃(𝑡) − 𝑎𝑟𝑡] + 𝜎𝑟𝑑𝑊𝑡, 
 

which is a Brownian motion with mean reversion. Mean reversion dictates that when 

the rate is above some “mean” level, it is pulled back towards that level with a certain 

force according to the size of parameter 𝑎. The mean reversion level 𝜃(𝑡) is time-

dependent which is what allows this model to be fitted to the initial yield curve. The 

mean reversion has the effect of damping the standard deviation of discount factors, 

𝐵(𝑡, 𝑇), written as:  

 

𝜎(𝐵(𝑡, 𝑇)) = 𝜎𝑟 [
1 − exp(−𝑎(𝑇 − 𝑡))

𝑎(𝑇 − 𝑡)
]. 

 

Although the yield curve is not modelling directly, it can be “reconstructed” at any 

point, given knowledge of the above parameters and the current short rate. Hence, 

using such an approach in a Monte Carlo simulation is relatively straightforward. 

Using historical data (real world calibration), one can estimate the standard deviation 

(volatility) of zero-coupon bond prices of various maturities, then it is possible to 

estimate values for 𝜎𝑟 and 𝑎. For risk-neutral pricing, these parameters would be 

calibrated to the prices of interest-rate swaptions with a time dependent volatility 

function  𝜎𝑟(. ). Spreadsheet 10.2 uses this model for a flat yield curve (Vasicek 

model). 

 

ii) FX  

 

FX is typically modelled via a geometric Brownian motion (GBM):  

 
𝑑𝑋𝑡
𝑋𝑡

= 𝑘[𝜃 − ln(𝑋𝑡)] + 𝜎𝐹𝑋(𝑡)𝑑𝑊𝑡, 

 

where 𝑘 is the rate of mean reversion to a long-term mean level 𝜃. For real world 

calibration then the volatility function will be flat and mean reversion may be relevant 

to avoid the FX rate “exploding” which is particularly important for long time 

horizons. For risk-neutral calibration then the mean reversion is less important since 

the volatility function, 𝜎𝐹𝑋(𝑡), will be calibrated directly. It is generally necessary to 

make assumptions about long-dated volatility (e.g. above 5-years) in this respect.  

 

iii) Equity 

 

A standard geometric Brownian motion (GBM) is defined by:  
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𝑑𝑆𝑡
𝑆𝑡

= 𝜇(𝑡)𝑑𝑡 + 𝜎𝐸(𝑡)𝑑𝑊𝑡. 

 

where 𝑆𝑡 represents the value of the equity in question at time 𝑡, 𝜇(𝑡) is the drift, 

𝜎𝐸(𝑡) is the volatility and 𝑑𝑊𝑡 is a standard Brownian motion. It is generally 

preferable to simulate single stocks via their relationship (beta) to indices. 

 

iv) Commodities 

 

A simple and popular model (see Geman 2005) is:  

 

ln(𝑆𝑡) = 𝑓𝑡 + 𝑍𝑡. 
 

𝑑𝑍𝑡 = [𝛼 − 𝛽𝑍𝑡]𝑑𝑡 + 𝜎𝐶(𝑡)𝑑𝑊𝑡. 

 

Where 𝑓 is a deterministic function, which may be expressed using sin or cos 

trigonometry functions to give the relevant periodicity and the parameters 𝛼 and 𝛽 are 

mean reversion parameters. 

 

v) Credit 

 

A typical model for credit including jumps could be: 

 

𝑑𝜆𝑡 = 𝜃[𝜂 − 𝜆𝑡]𝑑𝑡 + 𝜎𝜆√𝜆𝑡𝑑𝑊𝑡 + 𝑗𝑑𝑁, 
 

where 𝜆𝑡 is the intensity (or hazard rate) of default
2
 and 𝜃 and 𝜂 are mean reversion 

parameters. This model (depending on the calibrated parameters) can prevent negative 

hazard rates as required. Additionally, 𝑑𝑁 represents a Poisson jump with jump size 𝑗. 
This jump size can itself be random such as following an exponential distribution.  

  

                                                 
2
 This means that the default probability in a period 𝑑𝑡 conditional on no default before  time 𝑡 is 𝜆𝑡𝑑𝑡. 

The hazard rate is related to the credit spread as is explained in Chapter 12. 
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APPENDIX 10C: Computation of incremental and marginal exposure 

 

 

i) Incremental exposure 

 

In order to calculate the incremental exposure we simply need to add the simulated 

values for a new trade (𝑖) to those for the rest of the netting set. Working from 

equation (10.1), we can write 

 

𝑉𝑁𝑆+𝑖(𝑠, 𝑡) = ∑𝑉(𝑘, 𝑠, 𝑡) + 𝑉(𝑖, 𝑠, 𝑡)

𝐾

𝑘=1

= 𝑉𝑁𝑆(𝑠, 𝑡) + 𝑉(𝑖, 𝑠, 𝑡), 

   

giving the future value of the netting set, including the new trade in each simulation 

(𝑠) and at each time point (𝑡). From this, it is easy to calculate the new EE, which can 

be compared with the existing EE as required by equation (10.2). What is helpful here 

is that we need only know the future value of the netting set, not the constituent 

trades. From a systems point of view this reduces the storage requirements from a 

cube of dimension 𝐾 × 𝑆 × 𝑇 (which could be extremely costly) to a matrix of 

dimension 𝑆 × 𝑇. 

 

Typically, systems handle the computation of incremental exposure by calculating 

and storing the netting set information 𝑉𝑁𝑆(𝑠, 𝑡) (often in an overnight batch) and then 

generating the simulations for a new trade, 𝑉(𝑖, 𝑠, 𝑡) “on-the-fly” as and when 

required. The “reaggregation” is straightforward and recalculation of measures such 

as EE is then a quick calculation. 

 

ii) Marginal exposure 

 

Suppose we have calculated a netted exposure for a set of trades under a single netting 

agreement. We would like to be able write the total EE as a linear combination of EEs 

for each trade, i.e.:  

 

𝐸𝐸𝑡𝑜𝑡𝑎𝑙 =∑𝐸𝐸𝑖
∗.

𝑛

𝑖=1

 

 

If there is no netting then we know that the total EE will indeed be the sum of the 

individual components and hence the marginal EE will equal the EE (𝐸𝐸𝑖
∗ = 𝐸𝐸𝑖). 

However, since the benefit of netting is to reduce the overall EE, we expect in the 

event of netting that 𝐸𝐸𝑖
∗ < 𝐸𝐸𝑖. The aim is to find allocations of EE that reflect a 

trade’s contribution to the overall risk and sum up to the total counterparty level EE 

(𝐸𝐸𝑡𝑜𝑡𝑎𝑙). 
 

As described in Chapter 10, this type of problem has been studied for other metrics 

such as value-at-risk (VAR). In the absence of a collateral agreement, EE (like VAR) 

is homogenous of degree one which means that scaling the size of the underlying 

positions by a constant will have the same impact of the EE. This is written as: 

 

𝛂𝐸𝐸(𝑥) = 𝐸𝐸(𝛂𝑥), 
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where 𝛂 = (𝛼1, 𝛼2, … , 𝛼𝑛) is a vector of weights. By Euler’s theorem we can then 

define the marginal EE as:  

 

𝐸𝐸𝑖
∗ =

𝜕𝐸𝐸𝑡𝑜𝑡𝑎𝑙(𝛂)

𝜕𝛼𝑖
. 

 

One way to compute the above partial derivative is to change the size of a transaction 

by a small value and calculate the marginal EE using a finite difference. This does not 

require any additional simulation but just a rescaling of the future values of one trade 

by an amount (1 + 𝜀) followed by a recalculation of the EE for the netting set
3
. The 

marginal EE of the trade in question is then given by the change in the EE divided by 

 . The sum of the marginal EEs will sum to the total EE
4
. 

 

Alternatively, as shown by Rosen and Pykhtin (2010), it can be also computed via a 

conditional expectation: 

  

𝐸𝐸𝑖
∗ = 𝐸[max(𝑉𝑖, 0) |𝑉𝑁𝑆 > 0] = 𝑆−1∑max(𝑉𝑖,𝑠, 0) 𝐼(𝑉𝑁𝑆 > 0)

𝑆

𝑘=1

 

 

where 𝑉𝑖,𝑠 represents the future value for the transaction 𝑖 in simulation 𝑠 (ignoring 

the time suffix) and 𝑉𝑁𝑆 = ∑ 𝑉𝑖
𝑛
𝑖=1  is the future value for the relevant netting set. The 

function 𝐼(. ) is the indicator function that takes the value unity if the statement is true 

and zero otherwise. Such calculations are illustrated in Spreadsheet 10.6. More detail, 

including discussion on how to deal with collateralised exposures can be found in 

Rosen and Pykhtin (2010). The intuition behind the above formula is that the future 

values of the trade in question are added only if the netting set has positive value at 

the equivalent point. A trade that has a favourable interaction with the overall netting 

set may then have a negative marginal EE since its future value will be more likely to 

be negative when the netting set has a positive value. 

 

Whilst marginal EE is easy to calculate as defined above, it does require full storage 

of all the future values at the trade level. From a systems point of view, marginal EE 

could be calculated during the overnight batch with little additional effort whereupon 

the trade-level future values can be discarded. However, for analysing the change in 

marginal EE under the influence of a new trade(s) then, unlike incremental EE, all 

trade-level values must be retained. 

 

 

                                                 
3
 𝜀 is a small number such as 0.001. 

4
 At least in the current case where no collateral is assumed as discussed below. 


