

Jon Gregory, Partner

i) CVA for collateralised counterparties

 ii) General and specific wrong-way risk
 iii) The impact of collateral on wrong-way risk
 iv) Central counterparties

 v) Overall impact of collateral on counterparty risk

Obvious problems

- Imperfect collateral parameters (can't ask for enough)
- Time to receive collateral
- Volatility of collateral
- Need to post collateral ourselves

• Margin period of risk is the actual time delay when receiving collateral

- Pre-default (posting frequency, operational delays, disputes, settlement, grace period)
- Post-default (closeout, liquidation and rehedging / replacing trades)

• Must assume that collateral will always arrive late

For example, Basel II defines 10 business days for OTC derivatives

• Residual risk is due to

- Margin period of risk (20-days in this example as can be required under Basel III)
- Non-perfect collateral parameters (minimum transfer amount)
- (In this case we assume zero threshold and cash collateral)

Example 1

• Base case IRS, CSA with zero threshold

Example 2

Example 3

i) CVA for collateralised counterparties

 ii) General and specific wrong-way risk
 iii) The impact of collateral on wrong-way risk
 iv) Central counterparties
 v) Overall impact of collateral on counterparty risk

- It is typical to assume independence between
 - Default probability of counterparty
 - Exposure at default
- But in reality this is often wrong
 - Buying out of the money put options
 - Buying CDS protection
 - FX products involving local currencies
- Types of wrong-way risk
 - General (driven by macroeconomic co-dependencies)
 - Specific (driven structurally due to counterparty and trade type)

Empirical Evidence of Wrong-Way Risk

• Interest rate products

- Duffee [1996] shows a clustering of corporate defaults during low interest rates periods
- But institutions may be more likely to default when interest rates increase significantly?
- Note : correlation and dependency are not the same thing

Currency products

- Levy and Levin [1999] show a devaluation of currencies linked to sovereign default
- The devaluation is most severe for high credit quality entities
- Loss in Asian crisis of 1997 (e.g. Thai Baht US dollar cross currency swap with a Thai bank)
- Credit derivatives
 - Very clear relationship between exposure (credit spreads) and counterparty default

Rating	Devaluation
AAA	83%
AA	83%
А	78%
BBB	73%
BB	59%
В	38%
CCC	38%

Source : JP Morgan 1999

One way to interpret wrong way risk is to look at the unconditional default probability and the conditional exposure $CVA(t) = LGD \int EE(u)dPD_C(u)$ EE ----EE (wrong-way risk) -– EE (right-way risk) Exposure 20% conditional on 18% default 16% 14% **Expected Exposure** 12% 10% 8% 6% 4% 2% 0% 2 9 0 1 3 5 7 8 10 6 Time (years)

Interest Rate Swap

FX Devaluation Approach

- FX wrong way risk
 - Devaluation of currency linked to sovereign default
 - CDS market can only be explained via a jump effect

Italy CDS Market, May 2011

Maturity	USD	EUR
1Y	50	35
2Y	73	57
3Y	96	63
4Y	118	78
5Y	131	91
7Y	137	97
10Y	146	103

Implied RVs in June 2010 : Greece (91%), Italy (83%), Spain (80%) and Germany (75%)

• Bad example, counterparty at 240 bps, reference at 120 bps with recovery rate at 10% (Lehman recovery)

i) CVA for collateralised counterparties

 ii) General and specific wrong-way risk
 iii) The impact of collateral on wrong-way risk
 iv) Central counterparties
 v) Overall impact of collateral on counterparty risk

Wrong-Way Risk and Collateral

i) CVA for collateralised counterparties

 ii) General and specific wrong-way risk
 iii) The impact of collateral on wrong-way risk
 iv) Central counterparties
 v) Overall impact of collateral on counterparty risk

Bilateral market

<u>CCP market</u>

- Allocation of losses after CCP has closed out trades and liquidated
 variation margin
 At risk if CCP
 Initial margin (momber)
- Initial margin (member) defaults Defaulter **CCP capital charges** Reserve fund (member) pays **CCP** equity Trade level (initial margin) Reserve fund related Reserve Fund (non-At risk if CCP member defaults defaulting members) **Exposure to a CCP** Something like a second loss on a Additional capital financial basket contribution from CCP Moral hazard **CCP** Capital If initial margin is not sufficient then there is real risk as a CCP Liquidity Support or member **CCP** Fails

CCPs and Initial Margin

• Initial margin

- Cover the cost of a member defaulting (to a confidence level over a pre-defined period)
- Also significantly drives the cost of central clearing
- To a large extent independent of the credit quality of the member
- Not great in the case of wrong-way risk (likely jump in exposure when member defaults)

i) CVA for collateralised counterparties

 ii) General and specific wrong-way risk
 iii) The impact of collateral on wrong-way risk
 iv) Central counterparties

 v) Overall impact of collateral on counterparty risk

- Collateral (or lack of it) also creates funding costs (FVA)
- What is the combined impact of CVA and funding costs?

Copyright Jon Gregory 2013

Overall Effect

