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Leveraged super senior (LSS) trades represent a mechanism for 
packaging senior credit risk. A significant volume of LSS structures have 
been issued to date and yet there seems to be no formal pricing approach. 
In this article we discuss the valuation of LSS protection in a model 
independent framework. We argue that the "equivalence" approach to 
pricing that seems widely used is not appropriate. 

 
 
The structured credit market has grown rapidly in recent years with the synthetic 
CDO product which allows issuers to sell a particular tranche of a portfolio which 
they hedge with more simple instruments such as single name CDS. One problem in 
the early development of the CDO market was the fact that correlation was a key 
input to the pricing but was a rather opaque quantity. The development of the index 
tranche market in 2004 provided a solution to this problem of observability and has 
led to correlation trading across the capital structure for corporate credit portfolios and 
other asset classes such as ABS, leveraged loans and CMBS. 
 
One feature of the correlation market is that senior risk trades at a significant risk 
premium. Take the iTraxx [22-100%] tranche as an example: this 125 investment 
grade name portfolio will require 40 credit events at 30% average recovery value 
before suffering any loss2. Almost one third of the portfolio needs to default before 
this tranche loses principal and the likelihood of this might be considered negligible 
by market participants when taken into consideration alongside factors such as their 
own financial solvency.  
 
Even if an investor holds the view that a super senior tranche has no chance of ever 
suffering a loss, there is still the problem of mark-to-market price volatility, cost of 
capital and other aspects. These points tend to keep super senior spreads relatively 
wide as characterised by the high implied correlation in the senior region. For these 
reasons, there is incentive to develop other ways to package senior risk. One such 
example is the leveraged super senior (LSS) transaction. In this article, we will 
present a quantitative analysis on the pricing of protection purchased via LSS 
structures, noting that some the conclusions have broader implications, for example 
                                                
1 I am grateful to Michael Walker for comments on a preliminary draft of this paper and providing 
some pricing results. I also thank participants at the WBS Fixed Income conference 2007, the ICBI 
Global Derivatives and Risk Management conference 2007 and the ICBI Ri$kminds conference 2007 
for interesting discussions on this topic. Detailed initial discussions with David Shelton and comments 
from two anonymous referees are gratefully acknowledged.  
2 22% × 125 / (1 – 30%) = 39.3 



for structurally similar structured investment vehicles (SIVs) and credit derivative 
product companies (CDPCs). We will argue that the standard approach of pricing a 
LSS as being equal to the equivalent un-leveraged value less some “gap risk” is 
inherently inconsistent and could lead to some unpleasant surprises for LSS issuers3.  
 
This article is written at a time where LSS have suffered problems arising from the 
turbulence of July and August 2007 which created significant mark-to-market losses 
from a position taking super senior credit risk (a result of spread widening and 
increases in implied correlation). Our focus will be a robust theoretical pricing study 
and not other qualitative aspects such as rating agencies approaches and problems 
arising from the disruption in the Canadian conduit market. 
 
 
The Leveraged Super Senior Structure 
 
The premise of LSS is that super senior spreads in un-leveraged form do not have the 
correct risk-return profile to many investors since their premium is too small and the 
issuer therefore applies leverage to the product to create a more attractive return. The 
leverage in a LSS transaction reflects the fact that the investor’s cash participation is 
less than the notional of the super senior tranche. For example a $10 million 
investment may be leveraged 10 times into a super senior tranche with a notional of 
$100 million. The investor has sold protection on $100 of protection but posted only 
$10 initial collateral. Generally, for a leverage of x times, the investor will initially 
commit 1/x units of collateral as illustrated in Figure 1. LSS trades have mostly been 
structured on corporate credit but also more recently on ABS portfolios. 
 

                                                
3 In this article for LSS we will typically use “issuer” to refer to the protection buyer and “investor” the 
protection seller.  



Figure 1. Illustration of the LSS concept. A tranche is effectively multiplied by a 
leverage factor and the resulting tranche is collateralised as shown. 

 
 
There needs to be a mechanism to mitigate the risk that the LSS issuer retains via the 
uncollateralised exposure. This is achieved using a “trigger event” where the investor 
might have the option to de-leverage by posting more collateral but will otherwise 
face the structure being unwound by the issuer at prevailing market rates. 
  
To understand the LSS trigger mechanisms, note that the value of a super senior 
tranche depends on portfolio losses, average portfolio spread level4 and base 
correlation (more generally dependency between credit events) as well as remaining 
maturity. In defining a trigger, the issuer is trying to ensure that the unit value of the 
tranche will always be below x/1  with the likely incorporation of some cushion that 
may be appropriate given the risk in unwinding the trade. The trigger definition 
represents a balance between a simple definition that may ease documentation, 
understanding of the product and the ratings process and a more complex one that 
leaves less unwind risk for the issuer. It is useful to have the possible trigger events in 
mind and so we briefly describe the typical mechanisms used in the market. 
 
Loss only trigger. In this case the trigger is defined by a certain loss on the portfolio 
(which may increase over time to reflect time decay). The rating process for such a 
structure is rather easy since the payoff is similar to that of a CDO. However, the 
issuer is potentially heavily exposed from movements in the underlying spreads and 
implied correlation levels.  
 

                                                
4 Making the assumption that all spreads are equal to the average spread is conservative for the 
following purpose as this maximises the value of a senior tranche. 
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Spread triggers. Here, the trigger is defined by an average portfolio spread as a 
function of portfolio loss and time to maturity. Although there is less uncertainty, the 
issuer still has risk over the correlation at the trigger time. The rating model for such a 
structure is significantly more complex since it requires the portfolio spread process 
(and its relationship to default losses) to be modelled.  
 
Market value trigger. Finally, some structures reference the market value (PV) of the 
tranche directly. This guarantees the cushion available when the trigger is hit although 
some “gap risk” still exists for the issuer. The ratings agencies have at the time of 
writing not typically rated such structures5 perhaps due to a reluctance to model 
implied correlation levels.  
 
 
Pricing CDO Tranches 
 
More details on CDO tranche valuation can be found, for example, in Laurent and 
Gregory [2005]. Suppose the underlying tranche is defined by losses in ],[ BA . The 
tranche loss process )(, tM BA  is given by: - 
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where )(tL  is the cumulative portfolio loss at time t  and )0,max( yy  . The value 
at time t  of the loss leg of such a tranche with maturity T  is then essentially a 
integration over the loss distribution )(tL  of the portfolio in question: - 
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where ),( stB  represents the risk-free discount factor. In order to compute )(, tV BA  and 
more complex quantities, we need a model to represent )(tL . For the purposes of this 
paper we will restrict ourselves to a model independent analysis. 
 
 
The “Equivalence” Pricing Approach 
 
Since we denote the leverage of the structure as x , the initial investment (or 
collateral) will be  xAB /)( . We denote the time of unwind as   and use   to 
indicate that there will be some unwind period6. We make no specific assumptions on 

                                                
5 With the exception of DBRS the Canadian rating agency that rated LSS transactions for market value 
triggers for a time and then stopped in January 2007. 
6 Strictly speaking there are two components. Except in a market value trigger, the trigger may be badly 
specified so that the issuer is already losing money at the trigger time, i.e.  )(,BAV  or it may be 

only gap risk arising from the fact that )()( ,,
  BABA VV .  Often both components will be 

referred to generically as “gap risk”. The term )(,
BAV  contains all costs as a result of unwinding the 

structure. 



the trigger type and thus the analysis covers all three triggers previously defined (and 
any others that may exist). We focus solely on the value of the protection leg of each 
tranche since this is the key component in the analysis. Where relevant we will 
comment on the impact of the premium leg component in the pricing relationships 
derived. We denote by )(~

,, tV BA   the time t value of leveraged protection for leverage 
defined by  . 
 
In defining the trigger, the issuer will aim to ensure that   )(,BAV  in order to fully 
mitigate their risk. The issuer’s position often seems to be argued as being long 
protection on the full notional (the equivalent un-leveraged protection) less a “gap 
option” with strike   referenced to the underlying tranche value )(,

BAV : -  
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“gap option” 
 
where T1  is an indicator function that takes the value 1 if the trigger event occurs 
before maturity. The gap option might be priced under the physical measure as 
illustrated. The issuer is short the gap option due to the limited recourse feature of the 
trade which means that the investor is not responsible for any losses when 

  )(,BAV . In this framework, the issuer might argue that the short gap option has 
minimal value. This would presumably be the case if the trigger is well-defined so 
that there is ample cushion available. On the other hand, the issuer can also minimise 
the value of this option by ensuring that the probability of hitting the trigger is small. 
This seems to contradict the intuition that it is better to unwind such a structure sooner 
rather than later.  
 
In the following, we will describe a model and trigger independent analysis of LSS 
pricing for which there is one key assumption related to the trigger event. In some 
structures, unwind will be automatic whereas in others the investor will have the 
option to de-leverage via posting more collateral at pre-specified levels. We argue that 
whether or not the investor has this choice, to de-leverage is sub-optimal7 compared to 
unwinding and investing in a new LSS. This point may be debated and we should 
comment that in the recent market volatility, many LSS may have hit their triggers 
and investors may have chosen to de-leverage rather than face unwind in a market 
where there was virtually no liquidity on senior tranches. Such sub-optimal effects are 
not uncommon in other areas such as the convertible bond, Bermudan swaption and 
equity index option markets.  However, in a rigorous pricing framework we must 
assume optimal decisions and frictionless markets. Put another way, issuers cannot 
mark-to-market their leveraged super senior protection based on the assumption of 
sub-optimal behaviour by the investor.  
 

                                                
7 Even if the investor wants to remain a taker of super senior risk, their optimal strategy is to unwind 
and execute another LSS at a more attractive premium (and return on investment). When the investor 
unwinds then their losses are capped at   whereas if they de-leverage then they increase their 
potential losses without receiving any additional return (furthermore, the investor will typically not get 
the full gain from de-leverage i.e. they will be required to inject more collateral than the increase in 
trigger level).  



 
Formal Pricing Approach 
 
a) Loss only triggers 

 
Let us start from the simplest loss-only trigger with the trigger level denoted by K  
(the case of a time-dependent trigger is not substantially more complex). In this case, 
by construction the tranche cannot experience losses before the trigger is breached as 
long as AK  , i.e. the trigger is less that the attachment point of the tranche. This 
means that the protection buyer does not have any component corresponding to 
tranche losses similar to equation (2) but instead an option to exercise and receive the 
market value of the tranche at the trigger time. If the trigger is hit then the protection 
buyer will receive the value of the protection at time   (i.e. including unwind costs), 
up to the value of the collateral  . The value of the LSS protection is: - 
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Using the fact that  )(),min( baaba , we can show the origins of the gap option 
as characterised by equation (3).  
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 tBE T
Q  provides a superhedge for the value of the loss trigger 

LSS protection. This corresponds to a contract that pays to the issuer the amount of 
initial collateral   at the trigger time and can be priced8 as a digital CDO tranche 
with attachment point equal to the loss trigger and a notional of  . We can represent 
by  /)(, tV KK   the unit value of digital CDO tranche for small  . Hence we have the 
following inequality9: - 

  )(/)(~
,,, tVtV KK

LT
BA    .    (6) 

 
Since leveraged protection can never be worth more than the equivalent unleveraged 
protection (this might be reasonably obvious but for the avoidance of doubt is shown 
in the general case later) we can identify the point at which   )(/)( ,, tVtV KKBA    
as being significant since it effectively defines a maximum leverage10 for the 
transaction as the leveraged protection must be worth no more than the superhedge. 

                                                
8 With the usual problems associated with tranchelet pricing such as the interpolation of base 
correlation points. As mentioned earlier, the loss trigger levels may change over time in which case we 
need to price the more complex variable subordination tranche. 
9 To convert this relationship to one involving tranche spreads we must account for the fact that the 
premium legs can match so we should solve for the spread of a tranche paying a premium indexed to 
losses in the range ],[ BA  but with the digital protection leg that pays   as soon as the loss trigger is 
hit. 
10 By this we mean that there is a maximum leverage above which the issuer cannot argue under any 

circumstances that )()(~
,,, tVtV BA

LT
BA  . 



Using the previous definition of   we then obtain the following expression for the 
maximum leverage of a LSS based on tranche ],[ BA  with loss trigger K : - 
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Any leverage in excess of this quantity would violate the arbitrage condition imposed 
via (6) and enable the LSS protection seller to super-hedge with a digital tranche (and 
construct an arbitrage).  
 
In the case of a loss-only trigger LSS, we can apply the equivalence pricing approach 
represented by equation (3) but we must price under the risk-neutral measure. In this 
case the presence of a cheaper super-hedge would be seen via a significant (negative) 
contribution from the gap option. Pricing the gap option under the physical measure is 
not appropriate since even if the maximum leverage is not breached at trade inception, 
it may be later on as we will illustrate in a later example. The right way to price a 
loss-trigger LSS is therefore as a tranche option using an appropriate model for the 
dynamics of )(tL . We note that the hedging of this payoff will be a challenge and 
unpleasant gamma effects might be seen due to the super-hedge. 
 
Our model-independent arguments can be linked to recent dynamic modelling 
approaches such as Hull and White [2007] and Walker [2007] on loss-trigger LSS. 
Indeed the superhedge can be seen in the results of Walker [2007] since at sufficiently 
high leverage and/or loss trigger level the protection value varies exactly as predicted 
by equation (6) which is linear in   and therefore inversely proportional to the 
leverage x . 
 
 
b) More complex triggers 
 
In the case of triggers that are not purely loss based (spread and market value), we 
must make a more general analysis to account for the fact that tranche losses may 
occur before the trigger is hit. This can be thought of as being equivalent to the 
standard CDO protection as priced in equation (2) for the collateralised losses in 

],[ AA  conditional on the trigger event having not previously occurred. We 
represent the value of the LSS protection in this more general case as the sum of the 
following two components, the first corresponding to scenarios before the trigger is 
hit and the second to the trigger scenario as before : - 
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Compared to the equivalence approach, the above pricing formula represents a very 
different perspective on the LSS valuation in that it is equal to the collateralised 
protection and the option to receive the minimum of the market value of the tranche 
and the collateral   at the trigger time. This could be the view taken by the investor 
where the “trigger option” represented by the last term in equation (8) is argued to 
have minimal value. Indeed this is exactly the component assessed by rating agencies 



for typical LSS structures which can achieve triple-A ratings by virtue of 
quantification of the above equation (for example see Chandler et al. [2005]) under 
the physical measure11. Negotiations around the problems in the Canadian conduit 
market have involved the replacement of mark-to-market triggers by “more remote 
spread loss triggers”. If this is the case then issuers should be taking losses on LSS 
structures due to giving up option time value according to the second term in equation 
(8). At the time of writing, the triggers have even been temporarily removed which is 
not a choice supported by a rigorous pricing approach. 
 
Assuming we use the equivalence approach under the risk-neutral measure. Taking 
the difference between this pricing in equation (3) and equation (8): - 
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The equivalence pricing approach claims that the issuer has a full claim on the losses 

in the range ],[ BA   through the term 
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a claim can only be made on the present value of the protection corresponding to 
these losses at the trigger time via )](),(1[ ,





   BAT

Q VtBE . This shows that the 
equivalence approach is definitely not valid for pricing LSS contracts on structures 
using the more complex spread and market value triggers. 
 
 
Pricing Bounds 
 
From equation (8), we have the (perhaps obvious) bounds for the value of the 
leveraged protection12. 
 

                                                
11 Since rating agencies focus solely on expected loss or probability of loss and not mark to market 
volatility, the use of the physical measure is appropriate. Rating agencies seem to (conservatively) 
assume zero recovery. 
12 In relating the value of protection to tranche spreads we must be careful that both the upper and 
lower bounds correspond to contracts with a premium leg referenced to the full notional of )( AB  . 
This means that the upper bound spread would be exactly the fair spread on the un-leveraged ],[ BA  
tranche whereas the lower bound spread would correspond to a tranche with premium leg referenced to 
a ],[ BA  tranche but protection leg referenced to ],[ AA  losses. We must also condition on no 
trigger event in the premium leg calculation. 



)()(~)( ,,,, tVtVtV BABAAA   ,    (10) 
 
In the case of no trigger )][( E , the investor will suffer losses on the tranche as 
they occur but only up to the amount of the initial investment  . At the other 
extreme, the LSS protection can be worth no more than the equivalent un-leveraged 
protection which can be seen from the case where the trigger happens instantaneously 

)][( tE   with )(, tV BA  (to structure the deal otherwise would be rather naïve). 
We note that this upper bound is not obtained by the assumption of 

0])([ ,  BAVE  as in the equivalence pricing argument even though this is the 
situation of zero gap risk.  
 
An overview of the LSS pricing is illustrated in Figure 2 for the most popular spread 
and market value trigger types. We see that the equivalence approach represented by 
equation (3) is incompatible with the more formal treatment. Taken to an extreme, 
with no trigger, we have   01 TE   and both gap and trigger options are worthless. If 
there is little chance of hitting the trigger, the equivalence pricing approach suggests 
that there is only a small amount of gap risk and the LSS protection is close in value 
to the equivalent un-leveraged protection. Quite the opposite is true; in order to argue 
that leveraged protection is close to the value of )(, tV BA  then the (risk-neutral) 
probability of hitting the trigger must be significant.  
 

Figure 2. Schematic illustration of leveraged super senior valuation for spread and 
market value triggers. 
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The difference in valuation represented by Figure 2 comes about from the fact that the 
equivalence pricing argument implicitly assumes that, rather than unwinding the 
structure, the investor will choose to post more collateral and indeed that they will 
continue to do this up to the full value of the leveraged exposure (so if they are ten 
times leveraged they will voluntarily post up to nine times collateral for every initial 
unit of investment). 
 
We finally note that this analysis has implicitly assumed a continuity of )(, tV BA , most 
significantly ignoring the chance of a large jump in losses through the trigger. For 
example, a systemic shock involving multiple defaults or Armageddon scenario under 
risk-neutral dynamics would be extremely unpleasant for the LSS issuer as the losses 
may hit the uncollateralised portion of the tranche with no chance of mitigating 
action. Such points can be linked to the default contagion necessary to fit the index 
tranche market as, for example, described by Laurent et al. [2007]. Such contagion 
implies that the dynamics at the trigger time dictate that the issuer’s expected losses 
on unwinding are high even if the amount of cushion as seen from today’s perspective 
looks conservative.  
 
 
Example 
 
We now test the theoretical ideas through a real example using a loss only trigger 
structure which is the simplest case with which to illustrate the key points. We choose 
market data for the iTraxx tranche market for three separate dates as given in Table 1. 
The dates correspond to before the so-called “correlation crisis” of May 2005, before 
the 2007 “subprime crisis” and finally a more recent data set.  
 



Table 1. Market prices corresponding to the 5-year iTraxx index tranches. All prices 
are in basis points per annum (bp pa) except the equity tranches which are upfront 
assuming a 500 bp pa premium according to market convention. The [22-100%] 
premiums, typically not observed in the market, have been implied by reference to the 
index level shown. 

 4th May 2005 19th March 2007 4th December 2007 
Index 44 25 53 
[0-3%] 29.00% 11.87% 25.05% 
[3-6%] 168 54.5 156 
[6-9%] 49 14.8 85 
[9-12%] 25 6.8 60 
[12-22%] 16 2.8 34 
[22-100%] 5.5 2.4 15 
 
Consider a 5-year maturity LSS tranche based on the [22-100%] tranche with a loss-only trigger. 
We calculate13 the maximum leverage at inception as a function of the loss trigger as defined by 
equation (7). These results are illustrated in  
Figure 3. Not surprisingly, when the loss trigger is at low levels then the maximum 
leverage is high, reflecting the fact that the super-hedge is very costly. However, the 
level drops significantly as the loss trigger is moved upwards. For a constant loss 
trigger of 10% (corresponding to the assumption that the trigger is hit with just over 
half the original subordination remaining) a leverage of 5 times is not even possible. 
We can also notice that a steepening of the correlation curve generally causes the 
maximum leverage to drop which we could associate with the fact that the market 
implied prices are more “systemic”. For example, consider a loss trigger at 5%, which 
is less than a quarter of the entire subordination. This would permit a ten times 
leverage until the most recent date when the maximum leverage has dropped to 
around six times. 

                                                
13 We did this using the fairly standard base correlation and Gaussian copula model approach calibrated 
to the market prices with the correlation interpolated using a cublic spline. An example spreadsheet is 
available from the author on request.  



 
Figure 3. Illustration of the maximum leverage possible for a loss trigger LSS based 
on a [22-100%] tranche as a function of the loss trigger level. 
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Conclusion 
 
A clear conclusion of this analysis is that no LSS structure can be treated by an issuer 
as a purely “gap risk” product with the gap risk priced under the physical measure. In 
a loss-only trigger, the risk-neutral measure must be used for pricing the gap option, 
which may turn out to have significant value due to the superhedge of this payoff. For 
the more complex trigger types, which have been more common, there are additional 
problems due to the implicit assumption that the protection seller will always choose 
to de-leverage the structure. So for spread and market value triggers, the equivalence 
pricing approach is wrong and the correct approach is rather different as illustrated by 
Figure 2. There has been a clear lack of solid theoretical foundations in pricing LSS 
products (and the related structures such as SIVs and CDPCs) which has certainly not 
helped the recent credit problems. As we showed in a practical example, pricing LSS 
is not purely related to subjective assessments on gap risk, unwind periods and 
liquidity. Given the ongoing advances in portfolio credit modelling we may be 
hopeful of a lot more modelling effort going into pricing the approximately estimated 
$100 billion of LSS protection that exists in the market today and applying more 
robust quantitative approaches to the SIV structures, CDPC vehicles and other related 
structures that are common in the credit world. 
 
 
References  
 
Adams, M., M. Jhooty and J. Wong., 2005, “Fundementals of Leveraged Super Senior 
CDOs”, Dominion Bond Rating Service, June. 



 
Cian, C., L. Guadagnuolo, and N. Jobst., 2005, “CDO Spotlight: Approach to Rating 
Leveraged Super Senior CDO Notes”, Standard and Poor’s, August. 
 
Hull, J., and A. White, 2007, “Dynamic Models of Portfolio Credit Risk: A Simplified 
Approach”, working paper. 
 
Laurent, J-P., and J. Gregory., 2005, “Basket Default Swaps, CDO’s and Factor 
Copulas”, Journal of Risk, Vol. 7, No. 4.  
 
Laurent, J-P., A.Cousin, and J-D Fermanian., 2007, “Hedging default risks of CDOs 
in Markovian contagion models”, working paper. 
 
Marjolin, B., and M. Meuller, 2005, “Moody’s Approach to Leveraged Super Senior”, 
Moody’s Investor Service, July. 
 
Sidenius, J., V. Piterbarg and L. Andersen, 2006, “A New Framework for Dynamic 
Credit Portfolio Loss Modelling”, working paper. 
 
Walker, M., 2007, “Simultaneous Calibration to a Range of Portfolio Credit 
Derivatives with a Dynamic Discrete-Time Multi-Step Markov Loss Model”. working 
paper, http://www.physics.utoronto.ca/~qocmp/FCDO2.pdf 
 
 
 
 


